97 resultados para ABUNDANCES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jellyfish (Cnidaria: Scyphozoa) are increasingly thought to play a number of important ecosystem roles, but often fundamental knowledge of their distribution, seasonality and inter-annual variability is lacking. Bloom forming species, due to their high densities, can have particularly intense trophic and socio-economic impacts. In northern Europe it is known that one particularly large (up to 30 kg wet weight) bloom forming jellyfish is Rhizostoma spp. Given the potential importance, we set out to review all known records from peer-reviewed and broader public literature of the jellyfish R. octopus (Linnaeus) and R. pulmo (Macri) (Scyphozoa: Rhizostomae) across western Europe. These data revealed distinct hotspots where regular Rhizostoma spp. aggregations appeared to form, with other sites characterized by occasional abundances and a widespread distribution of infrequent observations. Surveys of known R. octopus hotspots around the Irish Sea also revealed marked inter-annual variation with particularly high abundances forming during 2003. The location of such consistent aggregations and inter-annual variances are discussed in relation to physical, climatic and dietary variations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the detection of microwave emission lines from the hydrocarbon anion C6H- and its parent neutral C6H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C4H, HC3N, HC5N, HC7N and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long- chain polyynes and cyanopolyynes (with more than 5 carbon atoms) in the Cepheus Flare star- forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, highlighting a wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines, and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes towards the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have conducted a sensitive 3mm observation toward the shocked region, Lynds 1157 B1, which is an interaction spot between a molecular outflow and its ambient gas. We have successfully detected the CH3CHO, HCOOCH3, and HCOOH lines, as well as the CH2DOH line. The abundances of these molecules relative to CH3OH are found to be lower than those in the low-mass star-forming core, IRAS 16293-2422. Since these molecules are thought to evaporate from grain mantles, the observational results mean that complex molecules are less abundant in grain mantles residing in the ambient cloud surrounding a prestellar/protostellar core. Instead, efficient formation of the complex organic species and deuterated species should take place in a prestellar/protostellar core. The present result verifies the importance of an unbiased line survey of this source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. The aim of this study is to examine if the well-known chemical gradient in TMC-1 is reflected in the amount of rudimentary forms of carbon available in the gas-phase. As a tracer we use the CH radical which is supposed to be well correlated with carbon atoms and simple hydrocarbon ions. Methods. We observed the 9-cm ?-doubling lines of CH along the dense filament of TMC-1. The CH column densities were compared with the total H2 column densities derived using the 2MASS NIR data and previously published SCUBA maps and with OH column densities derived using previous observations with Effelsberg. We also modelled the chemical evolution of TMC-1 adopting physical conditions typical of dark clouds using the UMIST Database for Astrochemistry gas-phase reaction network to aid the interpretation of the observed OH/CH abundance ratios. Results. The CH column density has a clear peak in the vicinity of the cyanopolyyne maximum of TMC-1. The fractional CH abundance relative to H2 increases steadily from the northwestern end of the filament where it lies around 1.0 × 10-8 , to the southeast where it reaches a value of 2.0 × 10-8. The OH and CH column densities are well correlated, and we obtained OH/CH abundance ratios of ~16–20. These values are clearly larger than what has been measured recently in diffuse interstellar gas and is likely to be related to C to CO conversion at higher densities. The good correlation between CH and OH can be explained by similar production and destruction pathways. We suggest that the observed CH and OH abundance gradients are mainly due to enhanced abundances in a low-density envelope which becomes more prominent in the southeastern part and seems to continue beyond the dense filament. Conclusions. An extensive envelope probably signifies an early stage of dynamical evolution, and conforms with the detection of a large CH abundance in the southeastern part of the cloud. The implied presence of other simple forms of carbon in the gas phase provides a natural explanation for the observation of “early-type” molecules in this region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Strangford Lough, Northern Ireland stocks of Ostrea edulis collapsed in the 1890s and the species was rarely recorded again until 1998 when the wild stock was estimated to be 100,000. The stock increased to 1.2 million in 2003 but declined to 650,000 by 2005. In 2007 the stock exceeded 1 million. The initial recovery of wild stocks is attributed to the combined effects of spawning commercial O. edulis stocks of and larval retention due to local hydrography. The stock decline between 2003 and 2005 is attributed to unregulated harvesting. Significant differences in abundances between sites over this period may be explained by the exploitation of more-readily accessible sites initially and of less accessible sites later. Oysters at sites where there was minimal exploitation probably contributed to widespread recruitment in 2007. Sustainable management of recovering native oyster stocks in Strangford Lough and elsewhere and will be impossible without appropriate legislation and enforcement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. Aims. While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). Methods. We have observed the rotational transition quartets J = 2K – 1K of 12CH3OH and 13CH3OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1-0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. Results. We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40 arcsec, towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. Conclusions. While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of the highest velocity ejecta of normal Type Ia supernovae (SNe Ia) are studied via models of very early optical spectra of six SNe. At epochs earlier than 1 week before maximum, SNe with a rapidly evolving Si II ?6355 line velocity (HVG) have a larger photospheric velocity than SNe with a slowly evolving Si II ?6355 line velocity (LVG). Since the two groups have comparable luminosities, the temperature at the photosphere is higher in LVG SNe. This explains the different overall spectral appearance of HVG and LVG SNe. However, the variation of the Ca II and Si II absorptions at the highest velocities (v>~20,000 km s-1) suggests that additional factors, such as asphericity or different abundances in the progenitor white dwarf, affect the outermost layers. The C II ?6578 line is marginally detected in three LVG SNe, suggesting that LVGs undergo less intense burning. The carbon mass fraction is small, only less than 0.01 near the photosphere, so that he mass of unburned C is only

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Testate amoebae have been used widely as a proxy of hydrological change in ombrotrophic peatlands, although their response to abiotic controls in other types of mire and fenland palaeo-environments is less well understood. This paper examines the response of testate amoebae to hydroseral and other environmental changes at Mer Bleue Bog, Ontario, Canada, a large ombrotrophic peatland, which evolved from a brackish-water embayment in the early Holocene. Sediments, plant macrofossils and diatoms examined from a 5.99 m core collected from the dome of the bog record six stages of development: i) a quiet, brackish-water riverine phase (prior to ca. 8500 cal BP); ii) a shallow lake (ca. 8500–8200 cal BP); iii) fen (8200–7600 cal BP); iv) transitional mire (7600–6900 cal BP); v) pioneer raised mire (6900–4450 cal BP); and vi) ombrotrophic bog (4450 cal BP-present).

Testate amoebae, notably small (<25 µm diameter) specimens of Centropyxis aculeata type, first appear in low abundances in sediments ascribed to the lacustrine phase. Diatoms from the same horizons record a shallowing in water depth, a decline in salinity and the development of emergent macrophytic vegetation, which may have provided favourable conditions for testate amoeba colonization. The testate amoeba communities of the inferred fen phase are more diverse and include centropyxids, cyclopyxids, Arcellidae and Hyalospheniidae, although the assemblages show some differences to those recently reported in modern European fen environments. The Fen–Bog Transition (FBT) is also dominated by C. aculeata type. The change in testate amoeba communities around this key transition is apparent in the results of Detrended Correspondence Analysis (DCA), and appears to reflect a latent nutrient gradient and a secondary moisture gradient. DCA analyses of plant macrofossil remains around the FBT show a similar trend, although the sensitivity of the two proxies to the inferred environmental changes differs. Comparisons with other regional mid-Holocene peatland records confirm the important influence of reduced effective precipitation on the testate amoeba communities during the initiation and development of Sphagnum-dominated, raised bog communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the results of our JCMT spectral line survey of molecular gas towards ultracompact HII regions with the predictions of models of sulphur chemistry in hot cores. We investigate the range of evolutionary models that are consistent with the observed physical conditions and chemical abundances, and see to what extent it is possible to constrain core ages by comparing abundances with the predictions of chemical models. The observed abundance ratios vary little from source to source, suggesting that all the sources are at a similar evolutionary stage. The models are capable of predicting the observed abundances of H2S, SO, SO2, and CS. The models fail to predict the amount of OCS observed, suggesting that an alternative formation route is required. An initial H2S abundance from grain mantle evaporation of similar to 10(-7) is preferred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several processes have been suggested as ways of returning accreted grain mantles to the gas, thus preventing the total removal of molecules from the gas phase in dark quiescent clouds. We attempt to distinguish between them by considering not only the calculated gas-phase abundances, but also the ratio of the abundances of deuterated species to non-deuterated species. We find that the D/H ratio in molecules is relatively model-independent, but that desorption due to the formation of H-2 on grains gives the best overall agreement with the observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a detailed depth-and time-dependent model of the molecular cloud associated with the ultracompact H II region G 34.3+0.15. Previous work on observations of NH3 and CS indicates that the molecular cloud has three distinct physical components:- an ultracompact hot core, a compact hot core and an extended halo. We have used the physical parameters derived from these observations as input to our detailed chemical kinetic modelling. The results of the model calculations are discussed with reference to the different chemistries occuring in each component and are compared with abundances derived from our recent spectral line survey of G 34.3+0.15 (Paper I).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of a model of the chemistry of deuterium-bearing molecules in hot molecular cores. It is found that because hydrogen- and deuterium-bearing molecules are destroyed by the same reactions at about the same rates, the initial fractionation present in ice mantles persists for over 10(4) yr. This is the case for a wide range of physical conditions, so it is safe to infer the fractionation on grain surfaces from observations of deuterated molecules in hot cores. The implications of the observed abundances of deuterium-bearing species in Orion are then discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The B5 dark cloud has been identified as a site of low-mass star formation. We report a survey of a selection of the molecular species modelled by the B5 dynamical and chemical model of Charnley et al. at the positions of circumstellar HCN clumps in B5 IRS1. All of the key species observed yield either abundances or upper limits to abundances below both the standard and the predicted values, appearing to show evidence of depletion and/or destruction if the transitions observed are thermalized. Our results are not in good agreement with the model, and they bring into question the interpretation of the structure of B5 IRS1 proposed by Fuller et al. It was expected that HCN clump C might exhibit a higher excitation than HCN clump A, since it appeared to be located within the blueshifted molecular outflow. However, there is no significant difference observed between the two clumps, suggesting that the near-infrared and optical nebulosity is evidence of a reflection nebula rather than shocked material in the outflow. Finally, it is observed that our results are more consistent with gas-grain models than with those models excluding gas-grain interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maps are presented of J=2-1 and J=3-2 (CO)-O-18 emission from the molecular environment of the bipolar nebula S106, together with complementary observations of the P-3(1)-P-3(0), C I emission. Line splitting observed extensively over the E molecular cloud suggests that it is best explained as the expanding remnant of a thick toroid surrounding the optical lobes. The poor correlation between the observed molecular line emission and dust continuum emission in the E cloud is probably due to a large temperature gradient. Strong C I emission from the protostellar candidate S106 FIR suggests the nearby presence of a powerful source of far-UV radiation, whose energy supply is unlikely to arise from gravitational contraction of a protostar. It is probable that this source is the star S106 LR, which also heats S106 FIR. There is evidence, in both C I and (CO)-O-18, for a predominantly blueshifted outflow from S106 IR, best interpreted as a stellar wind-driven shock into the toroidal remnant. (CO)-O-18 and (CO)-C-13 appear to be depleted, relative to canonical values for their abundances, in S106 FIR, despite its high optical extinction, which should discourage selective photodissociation. Elsewhere in the cloud the C I line profiles show a resemblance to those of (CO)-O-18, with intensity equivalent to a few photodissociation regions (PDRs) along the line of sight.