65 resultados para 335.13
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.
Resumo:
Secondary or late graft failure has been defined as the development of inadequate marrow function after initial engraftment has been achieved. We describe a case of profound marrow aplasia occurring 13 years after sibling allogeneic bone marrow transplantation for chronic myeloid leukaemia (CML) in first chronic phase. Although the patient remained a complete donor chimera, thereby suggesting that an unselected infusion of donor peripheral blood stem cells (PBSC) or bone marrow might be indicated, the newly acquired aplasia was thought to be immune in aetiology and some immunosuppression was therefore considered appropriate. Rapid haematological recovery was achieved after the infusion of unselected PBSC from the original donor following conditioning with anti-thymocyte globulin (ATG).
Resumo:
Over 1 million km2 of seafloor experience permanent low-oxygen conditions within oxygen minimum zones (OMZs). OMZs are predicted to grow as a consequence of climate change, potentially affecting oceanic biogeochemical cycles. The Arabian Sea OMZ impinges upon the western Indian continental margin at bathyal depths (150 - 1500 m) producing a strong depth dependent oxygen gradient at the sea floor. The influence of the OMZ upon the short term processing of organic matter by sediment ecosystems was investigated using in situ stable isotope pulse chase experiments. These deployed doses of 13C:15N labeled organic matter onto the sediment surface at four stations from across the OMZ (water depth 540 - 1100 m; [O2] = 0.35 - 15 μM). In order to prevent experimentally anoxia, the mesocosms were not sealed. 13C and 15N labels were traced into sediment, bacteria, fauna and 13C into sediment porewater DIC and DOC. However, the DIC and DOC flux to the water column could not be measured, limiting our capacity to obtain mass-balance for C in each experimental mesocosm. Linear Inverse Modeling (LIM) provides a method to obtain a mass-balanced model of carbon flow that integrates stable-isotope tracer data with community biomass and biogeochemical flux data from a range of sources. Here we present an adaptation of the LIM methodology used to investigate how ecosystem structure influenced carbon flow across the Indian margin OMZ. We demonstrate how oxygen conditions affect food-web complexity, affecting the linkages between the bacteria, foraminifera and metazoan fauna, and their contributions to benthic respiration. The food-web models demonstrate how changes in ecosystem complexity are associated with oxygen availability across the OMZ and allow us to obtain a complete carbon budget for the stationa where stable-isotope labelling experiments were conducted.