104 resultados para 321-U1338C
Resumo:
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography-mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gamma-proteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life.
Resumo:
The effect of the addition of water on the absorption of carbon dioxide by the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide was studied experimentally by measuring the low-pressure carbon dioxide solubility and the viscosity of the liquid solvent at temperatures from 303 to 323 K. Water is only partially miscible with the ionic liquid up to a mole fraction of 0.302 at 293 K, 0.321 at 303 K and 0.381 at 323 K. It was observed that the solubility of carbon dioxide decreases with the quantity of water from a mole fraction of 2.63 × 10-2 for the pure ionic liquid at 303.4 K to a value of 1.88 × 10-2, a reduction of 30% of the solubility, for a mole fraction of water of 0.28. The viscosity of the liquid solvent also decreases, up to 40% at 303 K, from 28.6 mPa s for the pure ionic liquid to 16.4 mPa s for a water mole fraction of 0.302.
Resumo:
This study used a virtual simulated 3vs3 rugby task to investigate whether gaps opening in particular running channels promote different actions by the ball-carrier player and whether an effect of rugby expertise is verified. We manipulated emergent gaps in three different locations: gap1 in the participant’s own running channel, gap 2 in the 1st receiver's running channel, and gap3 in the 2nd receiver's running channel. Recreational, intermediate, professional and non-rugby players performed the task. They could i) run with the ball, ii) make a short pass, or iii) make a long pass. All actions were digitally recorded. Results revealed that the emergence of gaps in the defensive line with respect to the participant’s own position significantly influenced action selection. Namely, ‘run’ was most often the action performed in gap 1, ‘short pass’ in gap 2, and ‘long pass’ in gap 3 trials. Furthermore, a strong positive relationship between expertise and task achievement was found.
Resumo:
1. Skeletal remains of greater white-toothed shrew Crocidura russula were recovered from barn owl Tyto alba and kestrel Falco tinnunculus pellets collected at 15 locations in Counties Tipperary and Limerick in Ireland in September 2007 and March 2008. Seven greater white-toothed shrews were trapped at four locations in Tipperary in March 2008. This is the first Irish record of C. russula and compelling evidence that the species is established in Ireland.
Resumo:
The only supernovae (SNe) to show gamma-ray bursts ( GRBs) or early x-ray emission thus far are overenergetic, broad- lined type Ic SNe ( hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximate to 6 x 10(51) erg) and ejected mass [similar to 7 times the mass of the Sun ( M.)] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a similar to 30 M. star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.
Resumo:
We continue our study of tensor products in the operator system category. We define operator system quotients and exactness in this setting and refine the notion of nuclearity by studying operator systems that preserve various pairs of tensor products. One of our main goals is to relate these refinements of nuclearity to the Kirchberg conjecture. In particular, we prove that the Kirchberg conjecture is equivalent to the statement that every operator system that is (min,er)-nuclear is also (el,c)-nuclear. We show that operator system quotients are not always equal to the corresponding operator space quotients and then study exactness of various operator system tensor products for the operator system quotient. We prove that an operator system is exact for the min tensor product if and only if it is (min,el)-nuclear. We give many characterizations of operator systems that are (min,er)-nuclear, (el,c)-nuclear, (min,el)-nuclear and (el,max)-nuclear. These characterizations involve operator system analogues of various properties from the theory of C*-algebras and operator spaces, including the WEP and LLP.
Resumo:
The evolution of the amplitude of two nonlinearly interacting waves is considered, via a set of coupled nonlinear Schrödinger-type equations. The dynamical profile is determined by the wave dispersion laws (i.e. the group velocities and the group velocity dispersion terms) and the nonlinearity and coupling coefficients, on which no assumption is made. A generalized dispersion relation is obtained, relating the frequency and wave-number of a small perturbation around a coupled monochromatic (Stokes') wave solution. Explicitly stability criteria are obtained. The analysis reveals a number of possibilities. Two (individually) stable systems may be destabilized due to coupling. Unstable systems may, when coupled, present an enhanced instability growth rate, for an extended wave number range of values. Distinct unstable wavenumber windows may arise simultaneously.