75 resultados para 250103 Colloid and Surface Chemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. Ionic liquid gels provide the ability to build functionality at every level, the solid component, the ionic liquid, and any incorporated active functional agents. This allows materials to be custom designed for a vast assortment of applications. This diverse class of materials has the potential to yield functional materials for green and sustainable chemistry, energy, electronics, medicine, food, cosmetics, and more. The discussion of the development of ionic liquid gel materials for applications in green and sustainable chemistry centres on uses of ionic liquid gels in catalysis and energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Complex molecules such as ethanol and dimethyl ether have been observed in a number of hot molecular cores and hot corinos. Attempts to model the molecular formation process using gas phase only models have so far been unsuccessful. Aims. To demonstrate that grain surface processing is a viable mechanism for complex molecule formation in these environments. Methods. A variable environment parameter computer model has been constructed which includes both gas and surface chemistry. This is used to investigate a variety of cloud collapse scenarios. Results. Comparison between model results and observation shows that by combining grain surface processing with gas phase chemistry complex molecules can be produced in observed abundances in a number of core and corino scenarios. Differences in abundances are due to the initial atomic and molecular composition of the core/corino and varying collapse timescales. Conclusions. Grain surface processing, combined with variation of physical conditions, can be regarded as a viable method for the formation of complex molecules in the environment found in the vicinity of a hot core/corino and produce abundances comparable to those observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The. electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group,arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The limited availability of experimental data and their quality have been preventing the development of predictive methods and Computer Aided Molecular Design (CAMD) of ionic liquids (ILs). Based on experimental speed of sound data collected from the literature, the inter-relationship of surface tension (s), density (?), and speed of sound (u) has been examined for imidazolium based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulphonyl) amide (NTf2), methyl sulphate (MeSO4), ethyl sulphate (EtSO4), and trifluoromethanesulphonate (CF3SO3) anions, covering wide ranges of temperature, 278.15–343.15 K and speed of sound, 1129.0–1851.0 m s-1. The speed of sound was correlated with a modified Auerbach's relation, by using surface tension and density data obtained from volume based predictive methods previously proposed by the authors. It is shown that a good agreement with literature data is obtained. For 133 data points of 14 ILs studied a mean percent deviation (MPD) of 1.96% with a maximum deviation inferior to 5% was observed. The correlations developed here can thus be used to evaluate the speeds of sound of new ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of adsorption and oxidation of CO on Ru(0001) electrode in sulfuric acid solution have been studied using in situ FTIR spectroscopy under potential control and at open circuit, the latter at 20 and 55 degrees C. The in situ IR data show clearly that the bisulfate anion adsorbs on the Ru(0001) surface over the potential range from -200 mV to 350 mV (vs. Ag/AgCl) at 20 degrees C in the absence and presence of adsorbed CO; however, increasing the temperature to 55 degrees C and/ or increasing the concentration of dissolved O-2 reduces the bisulfate adsorption. The formation of surface (hydro-) oxide at higher potentials replaces the bisulfate adsorbates. Both linear (COL) and three-fold hollow bonded CO (COH) adsorbates were produced following CO adsorption at Ru(0001) in H2SO4, as was observed in our previous studies in HClO4. However, the amount of adsorbed CO observed in H2SO4 was ca. 10% less than that in HClO4; in addition, the COL and COH frequencies were higher in H2SO4, and the onset potential for COads oxidation 25 mV lower. These new results are interpreted in terms of a model in which the adsorbed bisulfate weakens the CO adlayer, allowing the active Ru oxide layer to form at lower potentials. Significantly different results were observed at open circuit in H2SO4 compared both to the data under potential control and to our earlier data in HClO4, and these observations were rationalized in terms of the adsorbed HSO4- anions (pre-adsorbed at -200 mV) inhibiting the oxidation of the surface at open circuit (after stepping from the initial potential of -200 mV), as the latter was no longer driven by the imposed electrochemical potential but via chemical oxidation by trace dissolved O-2. Results from experiments at open circuit at 55 degrees C and using oxygen-saturated H2SO4 supported this model. The difference in Ru surface chemistry between imposed electrochemical control and chemical control has potential implications with respect to fuel cell electrocatalysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DRIFTS, TGA and resistance measurements have been used to study the mechanism of water and hydrogen interaction accompanied by a resistance change (sensor signal) of blank and Pd doped SnO2. It was found that a highly hydroxylated surface of blank SnO2 reacts with gases through bridging hydroxyl groups, whereas the Pd doped materials interact with hydrogen and water through bridging oxygen. In the case of blank SnO2 the sensor signal maximum towards H-2 in dry air (R-0/R-g) is observed at similar to 345 degrees C, and towards water, at similar to 180 degrees C, which results in high selectivity to hydrogen in the presence of water vapors (minor humidity effect). In contrast, on doping with Pd the response to hydrogen in dry air and to water occurred in the same temperature region (ca. 140 degrees C) leading to low selectivity with a high effect of humidity. An increase in water concentration in the gas phase changes the hydrogen interaction mechanism of Pd doped materials, while that of blank SnO2 is unchanged. The interaction of hydrogen with the catalyst doped SnO2 occurs predominantly through hydroxyl groups when the volumetric concentration of water in the gas phase is higher than that of H-2 by a factor of 1000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid screening assay (9 min/sample) has been developed and validated for the detection of deoxynivalenol in durum wheat, wheat products, and maize-based baby foods using an SPA biosensor. Through a single laboratory validation, the limits of detection (LOD) for wheat, wheat-based breakfast cereal, and maize-based baby food were 57, 9, and 6 mu g/kg, respectively. Intra-assay and interassay precisions were calculated for each matrix at the maximum and half-maximum European Union regulatory limits and expressed as the coefficient of variation (CV). All CVs fell below 10% with the exception of the between-run CV for breakfast cereal. Recoveries at the concentrations tested ranged from 92 to 115% for all matrices. Action limits of 161, 348, and 1378 mu g/kg were calculated for baby food, wheat-based breakfast cereal, and wheat, respectively, and the linear range of the assay was determined as 250-2000 mu g/kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced Raman (SERS) spectra of deoxyadenosine and 5'-dAMP on Ag and Au surfaces showed the protonation of both compounds in the N1 position, their orientation geometry on metal surfaces, and the formation of Ag+ complexes at alkaline pH on hydroxylamine-reduced Ag colloids. Interestingly, substitution at the N9 position caused dramatic changes in the relative band intensities within the spectra of both deoxyadenosine and 5'-dAMP compared to that of simple adenine, although they continued to be dominated by adenine vibrations. Concentration-dependent spectra of 5'-dAMP were observed, which matched that of adenine at high concentrations and that of deoxyadenosine at lower concentration (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved DRIFTS, MS, and resistance measurements were used to study the interaction of undoped and Pd-doped SnO2 with H-2 in air and argon at 300 degrees C. Using first-order kinetics, we compare the time constants for the resistance drop and its partial recovery with those of the surface hydroxyl evolution and water formation in the gas phase upon exposure to hydrogen. In the case of the undoped oxide, resistance and bridging hydroxyls (BOHs) evolve similarly, manifesting a fast main drop followed by recovery at a similar rate. The rate of water formation for this material was found to be much slower than that of the main drop in both the resistance and BOHs. In contrast, the resistance change for SnO2-Pd appeared to be similar to that of water formation, and no correlation was found between the evolution of resistance and surface OHs. Isotopic exchange on both materials revealed that water formation occurs via fast and slow hydrogen transfer to surface oxygen species. While the former originates from just-adsorbed hydrogen, the latter appears to proceed from the preadsorbed OHs. Both surfaces exhibit close interaction between chemisorbed oxygen and existing bridging OH groups, indicating that the latter is an intermediate in the hydrogen oxidation and generation of donor states on the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter contains sections titled:

•Introduction to Surface Plasmon Resonance Technology

•Working Principle of SPR

•Sensor Surface Chemistry and Its Fabrications

•Important Factors Impacting on the Performance of SPR-Based Analyses of Biological Interactions on the Nonbiological Transducer Surface

•Localized SPR of Inorganic Nanoparticles for Analyses of Biological Interaction

•References

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large, thin (50 mu m) dry polymer sheets containing numerous surface-enhanced Raman spectroscopy (SERS) active Ag nanopartide aggregates have been prepared by drying aqueous mixtures of hydroxyethylcelloulose (HEC) and preaggregated Ag colloid in 10 x 10 cm molds. In these dry films, the particle aggregates are protected from the environment during storage and are easy to handle; for example, they can be cut to size with scissors. When in use, the highly swellable HEC polymer allowed the films to rapidly absorb aqueous analyte solutions while simultaneously releasing the Ag nanoparticle aggregates to interact with the analyte and generate large SERS signals. Either the films could be immersed in the analyte solution or 5 mu L droplets were applied to the surface; in the latter method, the local swelling caused the active area to dome upward, but the swollen film remained physically robust and could be handled as required. Importantly, encapsulation and release did not significantly compromise the SERS performance of the colloid; the signals given by the swollen films were similar to the very high signals obtained from the parent citrate-reduced colloid and were an order of magnitude larger than a commercially available nanoparticle substrate. These "Poly-SERS" films retained 70% of their SERS activity after being stored for 1 year in air. The films were sufficiently homogeneous to give a standard deviation of 3.2% in the absolute signal levels obtained from a test analyte, primarily due to the films' ability to suppress "coffee ring" drying marks, which meant that quantitative analysis without an internal standard was possible. The majority of the work used aqueous thiophenol as the test analyte; however, preliminary studies showed that the Poly-SERS films could also be used with nonaqueous solvents and for a range of other analytes including theophylline, a therapeutic drug, at a concentration as low as 1.0 x 10(-5) mol dm(-3) (1.8 mg/dm(3)), well below the sensitivity required for theophylline monitoring where the target range is 10-20 mg/dm(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the extensive geographical range of palaeolimnological studies designed to assess the extent of surface water acidification in the United Kingdom during the 1980s, little attention was paid to the status of surface waters in the North York Moors (NYM). In this paper, we present sediment core data from a moorland pool in the NYM that provide a record of air pollution contamination and surface water acidification. The 41-cm-long core was divided into three lithostratigraphic units. The lower two comprise peaty soils and peats, respectively, that date to between approximately 8080 and 6740 cal. BP. The uppermost unit comprises peaty lake muds dating from between approximately ad 1790 and the present day (ad 2006). The lower two units contain pollen dominated by forest taxa, whereas the uppermost unit contains pollen indicative of open landscape conditions similar to those of the present. Heavy metal, spheroidal carbonaceous particle, mineral magnetics and stable isotope analysis of the upper sediments show clear evidence of contamination by air pollutants derived from fossil-fuel combustion over the last c. 150years, and diatom analysis indicates that the naturally acidic pool became more acidic during the 20th century. We conclude that the exceptionally acidic surface waters of the pool at present (pH=c. 4.1) are the result of a long history of air pollution and not because of naturally acidic local conditions. We argue that the highly acidic surface waters elsewhere in the NYM are similarly acidified and that the lack of evidence of significant recovery from acidification, despite major reductions in the emissions of acidic gases that have taken place over the last c. 30years, indicates the continuing influence of pollutant sulphur stored in catchment peats, a legacy of over 150years of acid deposition.