69 resultados para 17-170
Resumo:
This article analyses the relevance of the ECJ ruling in Junk for German labour law.
Resumo:
We apply time-dependent R-matrix theory to study inner-shell ionization of C atoms in ultra-short high-frequency light fields with a photon energy between 170 and 245 eV. At an intensity of 1017 W/cm2, ionization is dominated by single-photon emission of a 2l electron, with two-photon emission of a 1s electron accounting for about 2-3% of all emission processes, and two-photon emission of 2l contributing about 0.5-1%. Three-photon emission of a 1s electron is estimated to contribute about 0.01-0.03%. Around a photon energy of 225 eV, two-photon emission of a 1s electron, leaving C+ in either 1s2s2p3 or 1s2p4 is resonantly enhanced by intermediate 1s2s22p3 states. The results demonstrate the capability of time-dependent R-matrix theory to describe inner-shell ionization processes including rearrangement of the outer electrons.
Resumo:
Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element. © Springer Science+Business Media B.V. 2009.
Resumo:
The Faraday Discussion Mechanochemistry: From Functional Solids to Single Molecules which took place 21-23 May 2014 in Montreal, Canada, brought together a diversity of academic and industrial researchers, experimentalists and theoreticians, students, as well as experienced researchers, to discuss the changing face of mechanochemistry, an area with a long history and deep connections to manufacturing, that is currently undergoing vigorous renaissance and rapid expansion in a number of areas, including supramolecular chemistry, smart polymers, metal-organic frameworks, pharmaceutical materials, catalytic organic synthesis, as well as mineral and biomass processing and nanoparticle synthesis.