62 resultados para -- 1494-1556 -- Criticism and interpretation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of novel genomic technologies that enable the evaluation of genomic alterations on a genome-wide scale has significantly altered the field of genomic marker research in solid tumors. Researchers have moved away from the traditional model of identifying a particular genomic alteration and evaluating the association between this finding and a clinical outcome measure to a new approach involving the identification and measurement of multiple genomic markers simultaneously within clinical studies. This in turn has presented additional challenges in considering the use of genomic markers in oncology, such as clinical study design, reproducibility and interpretation and reporting of results. This Review will explore these challenges, focusing on microarray-based gene-expression profiling, and highlights some common failings in study design that have impacted on the use of putative genomic markers in the clinic. Despite these rapid technological advances there is still a paucity of genomic markers in routine clinical use at present. A rational and focused approach to the evaluation and validation of genomic markers is needed, whereby analytically validated markers are investigated in clinical studies that are adequately powered and have pre-defined patient populations and study endpoints. Furthermore, novel adaptive clinical trial designs, incorporating putative genomic markers into prospective clinical trials, will enable the evaluation of these markers in a rigorous and timely fashion. Such approaches have the potential to facilitate the implementation of such markers into routine clinical practice and consequently enable the rational and tailored use of cancer therapies for individual patients. © 2010 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal scales to date. It is clear that while these structures may demonstrate significant magnetic field strengths, their small sizes make them prone to the buffeting supplied by the ubiquitous surrounding convective plasma motions. Here, it is believed that magnetohydrodynamic waves can be induced, which propagate along the field lines, carrying energy upwards to the outermost extremities of the solar corona. Such wave phenomena can exist in a variety of guises, including fast and slow magneto-acoustic modes, in addition to Alfven waves. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate how wave motion is generated in the solar photosphere, which oscillatory modes are most prevalent, and the role that these waves play in supplying energy to various layers of the solar atmosphere.