687 resultados para Atomic and Molecular Physics, and Optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk handling of powders and granular solids is common in many industries and often gives rise to handling difficulties especially when the material exhibits complex cohesive behaviour. For example, high storage stresses in a silo can lead to high cohesive strength of the stored solid, which may in turn cause blockages such as ratholing or arching near the outlet during discharge. This paper presents a Discrete Element Method study of discharge of a granular solid with varying levels of cohesion from a flat-bottomed silo. The DEM simulations were conducted using the commercial EDEM code with a recently developed DEM contact model for cohesive solids implemented through an API. The contact model is based on an elasto-plastic contact with adhesion and uses hysteretic non-linear loading and unloading paths to model the elastic-plastic contact deformation. The adhesion parameter is a function of the maximum contact overlap. The model has been shown to be able to predict the stress history dependent behaviour depicted by a flow function of the material. The effects of cohesion on the discharge rate and flow pattern in the silo are investigated. The predicted discharge rates are compared for the varying levels of cohesion and the effect of adhesion is evaluated. The ability of the contact model to qualitatively predict the phenomena that are present in the discharge of a silo has been shown with the salient feature of mixed flow from a flat bottomed hopper identified in the simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analytical solution for the solid stresses in a silo with an internal tube. The research was conducted to support the design of a group of full scale silos with large inner concrete tubes. The silos were blasted and formed out of solid rock underground for storing iron ore pellets. Each of these silos is 40m in diameter and has a 10m diameter concrete tube with five levels of openings constructed at the centre of each rock silo. A large scale model was constructed to investigate the stress regime for the stored pellets and to evaluate the solids flow pattern and the loading on the concrete tube. This paper focuses on the development of an analytical solution for stresses in the iron ore pellets in the silo and the effect of the central tube on the stress regimes. The solution is verified using finite element analysis before being applied to analyse stresses in the solid in the full scale silo and the effect of the size of the tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth doped upconversion nanoparticles convert near-infrared excitation light into visible emission light. Compared to organic fluorophores and semiconducting nanoparticles, upconversion nanoparticles (UCNPs) offer high photochemical stability, sharp emission bandwidths, and large anti-Stokes shifts. Along with the significant light penetration depth and the absence of autofluorescence in biological samples under infrared excitation, these UCNPs have attracted more and more attention on toxin detection and biological labelling. Herein, the fluorescence probe based on UCNPs was developed for quantifying Aflatoxin B1 (AFB1) in peanut oil. Based on a specific immunity format, the detection limit for AFB1 under optimal conditions was obtained as low as 0.2 ng·ml- 1, and in the effective detection range 0.2 to 100 ng·ml- 1, good relationship between fluorescence intensity and AFB1 concentration was achieved under the linear ratios up to 0.90. Moreover, to check the feasibility of these probes on AFB1 measurements in peanut oil, recovery tests have been carried out. A good accuracy rating (93.8%) was obtained in this study. Results showed that the nanoparticles can be successfully applied for sensing AFB1 in peanut oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New absolute cross sections for dissociative electron attachment to HCCCN (cyanoacetylene or propiolonitrile) in the range of 0-10 eV electron energy are presented here, which have been determined from a new analysis of previously reported data (Graupner et al 2006 New J. Phys. 8 117). The highest cross sections are observed for the formation of CN- at 5.3 eV and CCCN- at 5.1 eV; approximately 0.06 Å2 and 0.05 Å2 respectively. As part of the re-analysis, it was necessary to determine absolute cross sections for electron-impact ionization of HCCCN with the binary-encounter Bethe method. These electron-impact ionization absolute cross sections for HCCCN are also presented here; the maximum value was found to be ∼6.6 Å2 at ∼80 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-target interaction represents a very promising field for several potential applications,
from the nuclear physics to the radiobiology. However optically accelerated particle beams are
characterized by some extreme features, not suitable for many applications. Therefore, beyond
the improvements at the laser-target interaction level, many researchers are spending their efforts
for the development of specific beam transport devices in order to obtain controlled and
reproducible output beams.In this background, the ELIMED (ELI-Beamlines MEDical applications)
project was born. Within 2017, a dedicated transport beam-line coupled with dosimetric
systems, named ELIMED, will be installed at the Extreme Light Infrastructure Beamlines
(ELI-Beamlines) facility in Prague (CZ),as a part of the ELIMAIA (ELI Multidisciplinary Applications
of laserâA ¸SIon Acceleration) beamline

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase resolved optical emission spectroscopy (PROES) bears considerable potential for diagnostics of RF discharges that give detailed insight of spatial and temporal variations of excitation processes. Based on phase and space resolved measurements of the population dynamics of excited states several diagnostic techniques have been developed. Results for a hydrogen capacitively coupled RF (CCRF) discharge are discussed as an example. The gas temperature, the degree of dissociation and the temporally and spatially resolved electron energy distribution function (EEDF) of energetic electrons (>12eV) are measured. Furthermore, the pulsed electron impact excitation during the field reversal phase, typical for hydrogen CCRF discharges, is exploited for measurements of atomic and molecular data like lifetimes of excited states, coefficients for radiationless collisional de-excitation (quenching coefficients), and cascading processes from higher electronic states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO oxidation on PtO2(110) has been studied using density functional theory calculations. Four possible reaction mechanisms were investigated and the most feasible one is the following: (i) the O at the bridge site of PtO2(110) reacts with CO on the coordinatively unsaturated site (CUS) with a negligible barrier; (ii) O-2 adsorbs on the bridge site and then interacts with CO on the CUS to form an OO-CO complex; (iii) the bond of O-OCO breaks to produce CO2 with a small barrier (0.01 eV). The CO oxidation mechanisms on metals and metal oxides are rationalized by a simple model: The O-surface bonding determines the reactivity on surfaces; it also determines whether the atomic or molecular mechanism is preferred. The reactivity on metal oxides is further found to be related to the 3rd ionization energy of the metal atom.