687 resultados para Atomic and Molecular Physics, and Optics
Resumo:
We analyze the role played by system-environment correlations in the emergence of non-Markovian dynamics. By working within the framework developed in Breuer et al. [Phys. Rev. Lett. 103, 210401 (2009)], we unveil a fundamental connection between non-Markovian behavior and dynamics of system-environment correlations. We derive an upper bound to the rate of change of the distinguishability between different states of the system that explicitly depends on the establishment of correlations between system and environment. We illustrate our results using a fully solvable spin-chain model, which allows us to gain insight into the mechanisms triggering non-Markovian evolution. © 2012 American Physical Society.
Resumo:
We apply time-dependent R-matrix theory to investigate harmonic generation from ground-state Ar+ with M = 0 at a wavelength of 390 nm. Contributions associated with the different 3s(2)3p(4) ionization thresholds are assessed, including the interference between these. The dominant contribution originates from the second ionization threshold, 3s(2)3p(4 1)D. Changes to the harmonic yields arising from the higher 3s3p(5) thresholds are also assessed. We further confirm that Ar+ has a higher harmonic yield than He for the same laser pulse, despite having a higher ionization threshold.
Resumo:
An approximate Kohn-Sham (KS) exchange potential v(xsigma)(CEDA) is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. v(xsigma)(CEDA) is an explicit functional of the occupied KS orbitals, which has the Slater v(Ssigma) and response v(respsigma)(CEDA) potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities \psi(isigma)\(2), as well as "off-diagonal" ones from the occupied-occupied orbital products psi(isigma)psi(j(not equal1)sigma). Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies epsilon(isigma) are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-epsilon(isigma) values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of v(xsigma)(CEDA) appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains H-n over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential. (C) 2002 American Institute of Physics.
Resumo:
We study the effect of thermal fluctuations on a probe qubit interacting with a Bose–Einstein condensed (BEC) reservoir. The zero-temperature case was studied in our previous work (Haikka et al 2011 Phys. Rev. A 84 031602), where we proposed a method for probing the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. In this paper, we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.
Resumo:
Collagen is widely used as a biomedical material, and its importance is likely to grow as research and understanding progresses in this field. As a biomedical material, ensuring the sterility of collagen before use as, or incorporation into, a medical device is paramount. However, common sterilisation techniques can induce changes in the physical structure and protein chemistry of collagen, potentially affecting the performance. In this preliminary study, the influence of autoclaving, gamma irradiation and ethylene oxide gas sterilisation on the denaturation temperature and helical content of the collagen was evaluated using differential scanning calorimetry and Fourier transform infrared spectroscopy. Early results indicate that all sterilisation techniques affect collagen properties but suggest that the least damaging of the techniques investigated was y irradiation.
Resumo:
We report on experiments aimed at the generation and characterization of solid density plasmas at the free-electron laser FLASH in Hamburg. Aluminum samples were irradiated with XUV pulses at 13.5 nm wavelength (92 eV photon energy). The pulses with duration of a few tens of femtoseconds and pulse energy up to 100 mu J are focused to intensities ranging between 10(13) and 10(17) W/cm(2). We investigate the absorption and temporal evolution of the sample under irradiation by use of XUV and optical spectroscopy. We discuss the origin of saturable absorption, radiative decay, bremsstrahlung and atomic and ionic line emission. Our experimental results are in good agreement with simulations.
Resumo:
We present a simple method of forming a switchable radar cross-section (RCS) in evanescent waveguide.Here, the antenna can be selected to be matched to free space, or to act as an almost perfect reflector of incident energy via a single SPST switch located at the antenna aperture. With the aperture switch open, the antenna is matched over a measured bandwidth of 17.5%, from 2.35 to 2.8 GHz, for reflection coefficient <-10 dB, in 2.725 GHz cutoff waveguide. With the aperture switch closed, a minimum reflection coefficient of -2.5 dB across the bandwidth is observed, proving that the antenna has the capacity to be made RCS reconfigurable. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1849–1851, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26981
Resumo:
This article describes a practical demonstration of a complete full-duplex “amplitude shift keying (ASK)” retrodirective radio frequency identification (RFID) transceiver array.The interrogator incorporates a “retrodirective array (RDA)” with a dual-conversion phase conjugating architecture in order to achieve better performance than is possible with conventional RFID solutions. Here mixers phase conjugate the incoming signal and a carrier recovery circuit recovers incoming angle of arrival phase information of an encoded amplitude shift keyed signal. The resulting interrogator provides a receiver sensitivity level of -109 dBm. A four element square patch RDA gives a 3 dB automatic beam steering angle of acceptance of ±45°. When compared to an RFID system operating by conventional (non-retrodirective) means retrodirective action leads to improved range extension of up to 16 times at ±45°. Operator pointing accuracy requirements are also reduced due to automatic retrodirective self-pointing. These features significantly enhance deployment opportunities requiring long range low equivalent isotropic radiation power (EIRP) and/or RFID tagging of moving platforms. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:160–164, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27258
Resumo:
This article describes by means of a simple model how signal recombination effects behave under the influence of phase conjugating retrodirective array (RDA) technology. A two-ray ground reflection model is used to predict the operational advantages of RDA technology in multipath rich environments. The simulation results show that advantageous signal recombination occurs due to automatic self-phasing. As the number of elements in the RDA increases, the fading effect normally observed due to out of phase multipath signal is mitigated to the extent that the system approaches that of one operating in a free space environment. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1987–1989, 2013
Resumo:
We show that the use of probabilistic noiseless amplification in entangled coherent state-based schemes for the test of quantum nonlocality provides substantial advantages. The threshold amplitude to falsify a Bell-CHSH nonlocality test, in fact, is significantly reduced when amplification is embedded into the test itself. Such a beneficial effect holds also in the presence of detection inefficiency. Our study helps in affirming noiseless amplification as a valuable tool for coherent information processing and the generation of strongly nonclassical states of bosonic systems.
Resumo:
We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate. Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.
Resumo:
We investigate the backflow of information in a system with a second-order structural phase transition, namely, a quasi-one-dimensional Coulomb crystal. Using standard Ramsey interferometry which couples a target ion (the system) to the rest of the chain (a phononic environment), we study the non-Markovian character of the resulting open system dynamics. We study two different time scales and show that the backflow of information pinpoints both the phase transition and different dynamical features of the chain as it approaches criticality. We also establish an exact link between the backflow of information and the Ramsey fringe visibility.
Resumo:
We employ the time-dependent R-matrix (TDRM) method to calculate anisotropy parameters for positive and negative sidebands of selected harmonics generated by two-color two-photon above-threshold ionization of argon. We consider odd harmonics of an 800-nm field ranging from the 13th to 19th harmonic, overlapped by a fundamental 800-nm IR field. The anisotropy parameters obtained using the TDRM method are compared with those obtained using a second-order perturbation theory with a model potential approach and a soft photon approximation approach. Where available, a comparison is also made to published experimental results. All three theoretical approaches provide similar values for anisotropy parameters. The TDRM approach obtains values that are closest to published experimental values. At high photon energies, the differences between each of the theoretical methods become less significant.