639 resultados para PLANETARY-NEBULAE
Resumo:
Aims. In this paper we report on calculations of energy levels, radiative rates, oscillator strengths, line strengths, and effective collision strengths for transitions among the lowest 362 levels of the (1s22s22p6) 3s23p5, 3s3p6, 3s23p43d, 3s3p53d, 3s23p33d2, 3s3p43d2, 3p63d, and 3s23p44 configurations of Cr viii. Methods. The general-purpose relativistic atomic structure package (grasp) and flexible atomic code (fac) are adopted for the calculations. Results. Radiative rates, oscillator strengths, and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) transitions among the 362 levels. Comparisons are made with earlier available results and the accuracy of the data is assessed. Additionally, lifetimes for all 362 levels are listed, although comparisons with other theoretical results are limited to only a few levels. Our energy levels are estimated to be accurate to better than 3% (within 0.4 Ryd), whereas results for other parameters are probably accurate to better than 20%. Finally, electron impact collision strengths and excitation rates are computed for all transitions over a wide energy (temperature) range. For these calculations, FAC is adopted and results in the form of effective collision strengths are reported over a wide temperature range of 105.0−106.6 K.
Resumo:
We present high-cadence observations and simulations of the solar photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere imaging system and the MuRAM magnetohydrodynamic (MHD) code, respectively. Each data set demonstrates a wealth of magnetoacoustic oscillatory behavior, visible as periodic intensity fluctuations with periods in the range 110–600 s. Almost no propagating waves with periods less than 140 s and 110 s are detected in the observational and simulated data sets, respectively. High concentrations of power are found in highly magnetized regions, such as magnetic bright points and intergranular lanes. Radiative diagnostics of the photospheric simulations replicate our observational results, confirming that the current breed of MHD simulations are able to accurately represent the lower solar atmosphere. All observed oscillations are generated as a result of naturally occurring magnetoconvective processes, with no specific input driver present. Using contribution functions extracted from our numerical simulations, we estimate minimum G-band and 4170 Å continuum formation heights of 100 km and 25 km, respectively. Detected magnetoacoustic oscillations exhibit a dominant phase delay of −8◦ between the G-band and 4170 Å continuum observations, suggesting the presence of upwardly propagating waves.More than 73% of MBPs (73% from observations and 96% from simulations) display upwardly propagating wave phenomena, suggesting the abundant nature of oscillatory behavior detected higher in the solar atmosphere may be traced back to magnetoconvective processes occurring in the upper layers of the Sun’s convection zone.
Resumo:
Observations of extreme ultraviolet (EUV) emission from an X-class solar flare that occurred on 2011 February 15 at 01: 44 UT are presented, obtained using the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The complete EVE spectral range covers the free-bound continua of H I (Lyman continuum), He I, and He II, with recombination edges at 91.2, 50.4, and 22.8 nm, respectively. By fitting the wavelength ranges blueward of each recombination edge with an exponential function, light curves of each of the integrated continua were generated over the course of the flare, as was emission from the free-free continuum (6.5-37 nm). The He II 30.4 nm and Ly alpha 121.6 nm lines, and soft X-ray (SXR; 0.1-0.8 nm) emission from GOES are also included for comparison. Each free-bound continuum was found to have a rapid rise phase at the flare onset similar to that seen in the 25-50 keV light curves from RHESSI, suggesting that they were formed by recombination with free electrons in the chromosphere. However, the free-free emission exhibited a slower rise phase seen also in the SXR emission from GOES, implying a predominantly coronal origin. By integrating over the entire flare the total energy emitted via each process was determined. We find that the flare energy in the EVE spectral range amounts to at most a few percent of the total flare energy, but EVE gives us a first comprehensive look at these diagnostically important continuum components.
Resumo:
A number of recent investigations have revealed that transverse waves are ubiquitous in the solar chromosphere. The vast majority of these have been reported in limb spicules and active region fibrils. We investigate long-lived, quiet-Sun, on-disk features such as chromospheric mottles (jet-like features located at the boundaries of supergranular cells) and their transverse motions. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. The data set is comprised of simultaneous imaging in the Ha core, Ca II K, and G band of an on-disk quiet-Sun region. Time-distance techniques are used to study the characteristics of the transverse oscillations. We detect over 40 transverse oscillations in both bright and dark mottles, with periods ranging from 70 to 280 s, with the most frequent occurrence at ~165 s. The velocity amplitudes and transverse displacements exhibit characteristics similar to limb spicules. Neighboring mottles oscillating in-phase are also observed. The transverse oscillations of individual mottles are interpreted in terms of magnetohydrodynamic kink waves. Their estimated periods and damping times are consistent with phase mixing and resonant mode conversion.
Resumo:
We present distribution maps for all cryptotephras (distal volcanic ash layers) younger than 7 ka that have been reported from three or more lakes or peatlands in north-west Europe. All but one of the tephras originates from Iceland; the exception has been attributed to Jan Mayen. We find strong spatial patterning in tephra occurrence at the landscape scale; most, but not all of the tephra occurrences are significantly spatially clustered, which likely reflects atmospheric and weather patterns at the time of the eruptions. Contrary to expectations based on atmospheric modelling studies, tephras appear to be at least as abundant in Ireland and northern Scotland as in Scandinavia. Rhyolitic and other felsic tephras occur in lakes and peatlands throughout the study region, but andesitic and basaltic tephras are largely restricted to lake sites in the Faroe Islands and Ireland. Explanations of some of these patterns will require further research on the effects of different methodologies for locating and characterizing cryptotephras. These new maps will help to guide future investigations in tephrochronology and volcanic hazard analysis.
Resumo:
High cadence, multiwavelength, optical observations of a solar active region, obtained with the Swedish Solar Telescope, are presented. Two magnetic bright points are seen to separate in opposite directions at a constant velocity of 2.8 km s(-1). After a separation distance of approximate to 4400 km is reached, multiple Ellerman bombs are observed in both Ha and Ca-K images. As a result of the Ellerman bombs, periodic velocity perturbations in the vicinity of the magnetic neutral line, derived from simultaneous Michelson Doppler Imager data, are generated with amplitude +/-6 km s(-1) and wavelength approximate to 1000 km. The velocity oscillations are followed by an impulsive brightening visible in Ha and Ca-K, with a peak intensity enhancement of 63%. We interpret these velocity perturbations as the magnetic field deformation necessary to trigger forced reconnection. A time delay of approximate to 3 minutes between the Ha-wing and Ca-K observations indicates that the observed magnetic reconnection occurs at a height of similar to 200 km above the solar surface. These observations are consistent with theoretical predictions and provide the first observational evidence of microflare activity driven by forced magnetic reconnection.
Resumo:
Aims. We compare the predictions of evolutionary models for early-type stars with atmospheric parameters, projected rotational velocities and nitrogen abundances estimated for a sample of Be-type stars. Our targets are located in 4 fields centred on the Large Magellanic Cloud cluster: NGC 2004 and the N 11 region as well as the Small Magellanic Cloud clusters: NGC 330 and NGC 346.
Resumo:
We present the discovery of two ultraluminous supernovae (SNe) at z approximate to 0.9 with the Pan-STARRS1 Medium Deep Survey. These SNe, PS1-10ky and PS1-10awh, are among the most luminous SNe ever discovered, comparable to the unusual transients SN 2005ap and SCP 06F6. Like SN 2005ap and SCP 06F6, they show characteristic high luminosities (M-bol approximate to -22.5 mag), blue spectra with a few broad absorption lines, and no evidence for H or He. We have constructed a full multi-color light curve sensitive to the peak of the spectral energy distribution in the rest-frame ultraviolet, and we have obtained time series spectroscopy for these SNe. Given the similarities between the SNe, we combine their light curves to estimate a total radiated energy over the course of explosion of (0.9-1.4) x 10(51) erg. We find photospheric velocities of 12,000-19,000 km s(-1) with no evidence for deceleration measured across similar to 3 rest-frame weeks around light curve peak, consistent with the expansion of an optically thick massive shell of material. We show that, consistent with findings for other ultraluminous SNe in this class, radioactive decay is not sufficient to power PS1-10ky, and we discuss two plausible origins for these events: the initial spin-down of a newborn magnetar in a core-collapse SN, or SN shock breakout from the dense circumstellar wind surrounding a Wolf-Rayet star.
Resumo:
We present adaptive optics imaging of the core-collapse supernova (SN) 2009md, which we use together with archival Hubble Space Telescope data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of V=-4.63+0.3-0.4 mag and a colour of V-I= 2.29+0.25-0.39 mag, corresponding to a progenitor luminosity of log L/L?similar to 4.54 +/- 0.19 dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with M= 8.5+6.5-1.5 M?. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of 56Ni ejected in the explosion to be (5.4 +/- 1.3) x 10-3 M? from the luminosity on the radioactive tail, which is in agreement with the low 56Ni masses estimated for other sub-luminous Type IIP SNe. From the light curve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log L/L?similar to 4.35 dex) and model luminosities after the second dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core collapse. This is now the third discovery of a low-mass progenitor star producing a low-energy explosion and low 56Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse SN (78 M?).
Resumo:
We investigate the spatial coincidence of ultraluminous X-ray sources (ULXs) with young massive stellar clusters. In particular, we perform astrometry on Chandra and Hubble Space Telescope (HST) data of two ULXs that are possibly associated with such clusters.
Resumo:
SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter (similar to 0.6 mag) than other SN 2002cx-like objects, peaking at M-V = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of similar to 2000 km s(-1) at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M-V = -14.2 mag, similar to 4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.
Resumo:
The pre-explosion observations of the Type II-P supernovae 2006my, 2006ov and 2004et are re-analysed. In the cases of supernovae 2006my and 2006ov we argue that the published candidate progenitors are not coincident with their respective supernova sites in pre-explosion Hubble Space Telescope observations. We therefore derive upper luminosity and mass limits for the unseen progenitors of both these supernovae, assuming they are red supergiants: 2006my (log L/L-circle dot = 4.51; m
Resumo:
Aims. The aim of this paper is to discuss the nature of two type Ic supernovae SN 2007bg and SN 2007bi and their host galaxies. Both supernovae were discovered in wide-field, non-targeted surveys and are found to be associated with sub-luminous blue dwarf galaxies identified in SDSS images.
Resumo:
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 +/- 1 M-circle dot from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above similar to 20 M-circle dot may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type H SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and these SNe pose a challenge to stellar evolutionary theory.
Resumo:
There has been considerable uncertainty about the nature of Pleistocene environments colonised by the first modern humans in Island SE Asia, and about the vegetation of the Last Glacial Maximum (LGM) in the region. Here, the palynology from a series of exposures in the Great Cave of Niah, Sarawak, Malaysian Borneo, spanning a period from ca. 52,000 to 5000 BP is described. Vegetation during this period was climate-driven and often highly unstable. Interstadials are marked by lowland forest, sometimes rather dry and at times by mangroves. Stadials are indicated by taxa characteristic of open environments or, as at the LGM, by highly disturbed rather open forest. Stadials are also characterised by taxa now restricted to 1000-1600 m above sea level, suggesting temperature declines of ca 7-9 C relative to present, by comparison with modern lapse rates. The practice of biomass burning appears associated with the earliest human activity in the cave.