103 resultados para x radiation
High-temperature synchrotron x-ray diffraction study of the phase transformations in titanium alloys
Resumo:
The time-integrated spatial coherence of neonlike germanium x-ray laser radiation has been studied with a new dispersing coherence diagnostic. Angle-dependent spatial coherence data are recorded by sampling the diverging beam at each lasing wavelength in several directions simultaneously. Measurements of the spatial coherence, and hence effective source sizes, relevant to the output beams from double-slab targets for the J = 2-1 spectral lines at wavelengths 28.6, 23.6, and 23.2 nm and for the J = 0-1 line at 19.6 nm show differences, which indicate different conditions in the plasma volume amplifying these emissions. Targets are pumped by subnanosecond pulse drivers, with and without a prepulse, but 19.6 nm emission is detected only in the prepulsed case. The differences are discussed in terms of the time evolution of the spectral lines. (C) 1997 Optical Society of America.
Resumo:
An imaging microscope, comprising a Schwarzchild condenser and zone plate optical arrangement, has been established on the Vulcan Nd-glass laser system at the Rutherford Appleton Laboratory (RAL). Images of simple test structures have been taken in X-ray transmission using doublet X-ray laser radiation at 23.2 nm and 23.6 nm from collisionally pumped Ne-like germanium. Image resolution of about 0.15 mum has been measured.
Resumo:
An imaging microscope, comprising a Schwarzchild condenser and a zone-plate optical arrangement, has been established on the Vulcan Nd:glass laser system at the Rutherford Appleton Laboratory. Magnified images of simple test structures have been taken in x-ray transmission in a single subnanosecond laser shot by using doublet x-ray laser radiation at 23.2 and 23.6 nm from collisionally pumped Ne-like germanium. Image resolutions of approximately 0.15 mum have been measured. The results are a proof of principle and demonstrate that images of potentially suboptical resolution and of specimen regions that are destroyed on passage of the x-ray beam can be taken successfully using the Vulcan x-ray laser.
Resumo:
We present results of experiments studying the efficiency of high harmonic generation from a gas target using the TITANIA krypton fluoride laser at the Rutherford Appleton Laboratory. The variation of harmonic yield for the 7th to 13th harmonics (355-191 Angstrom) is studied as a function of the backing pressure of a solenoid valve gas jet and of the axial position of the laser focus relative to the centre of the gas jet nozzle. Harmonic energies up to 1 mu J were produced in helium and neon targets from laser energies of approximately 200 mJ. This corresponds to absolute conversion efficiencies of up to 5 x 10(-6).
Resumo:
We present images of the source of extreme ultraviolet (XUV) harmonic emission at a wavelength of 220 Angstrom from the interaction of a 20 TW, 1.053 mu m Nd:glass laser beam focused to intensities up to 4x10(18) W cm(-2) onto a solid target. From these measurements we determine an upper limit to the source size and brightness of the harmonic emission to show its efficacy as a novel source of short-pulse, coherent XUV radiation. We also demonstrate the empirical scaling of the harmonic generation efficiency with irradiance up to 10(19) W mu m(2) cm(-2), and extrapolate to estimate the possible source brightness at higher irradiances. These source brightnesses are compared to those available from an x-ray laser system. (C) 1997 American Institute of Physics.
Resumo:
Radiation-induced bystander responses are observed when cells respond to their neighbours being irradiated. Considerable evidence is now available regarding the importance of these responses in cell and tissue models. Most studies have utilized two approaches where either a media-transferable factor has been assessed or cells have been exposed to low fluences of charged particles, where only a few percent are exposed. The development of microbeams has allowed nontargeted responses such as bystander effects to be more carefully analysed. As well as charged particle microbeams, X-ray microprobes have been developed, and several groups are also developing electron microbeams. Using the Gray Cancer Institute soft X-ray microprobe, it has been possible to follow the response of individual cells to targeted low doses of carbon-characteristic soft X-rays. Studies in human fibroblasts have shown evidence of a significant radiation quality-dependent bystander effect, measured as chromosomal damage in the form of micronuclei which is radiation quality dependent. Other studies show that even under conditions when only a single cell is targeted with soft X-rays, significant bystander-mediated cell killing is observed. The observation of bystander responses with low LET radiation suggests that these may be important in understanding radiation risk from background levels of radiation, where cells observe only single electron track traversals. Also, the indirect evidence for these responses in vivo indicates that they may have a role to play in current radiotherapy approaches and future novel strategies involving modulating nontargeted responses.
Resumo:
Evidence has accumulated that radiation induces a transmissible persistent destabilization of the genome, which mag. result in effects arising in the progeny of irradiated but surviving cells. An enhanced death rate among the progeny of cells surviving irradiation persists for many generations in the form of a reduced plating efficiency. Such delayed reproductive death is correlated with an increased occurrence of micronuclei. Since it has been suggested that radiation-induced chromosomal instability might depend on the radiation quality, we investigated the effects of alpha particles of different LET by looking at the frequency of delayed micronuclei in Chinese hamster V79 cells after cytochalasin-induced block of cell division, A dose-dependent increase in the frequency of micronuclei was found in cells assayed 1 week postirradiation or later. Also, there was a persistent increase in the frequency of dicentrics in surviving irradiated cells, Moreover, we found an increased micronucleus frequency in all of the 30 clones isolated from individual cells which had been irradiated with doses equivalent to either one, two or three alpha-particle traversals per cell nucleus, We conclude that the target for genomic instability in Chinese hamster cells must be larger than the cell nucleus. (C) 1997 by Radiation Research Society
Resumo:
Many studies have shown that with increasing LET of ionizing radiation the RBE (relative biological effectiveness) for dsb (double strand breaks) induction remains around 1.0 despite the increase in the RBE for cell killing. This has been attributed to an increase in the complexity of lesions, classified as dsb with current techniques, at multiply damaged sites. This study determines the molecular weight distributions of DNA from Chinese hamster V79 cells irradiated with X-rays or 110 keV/mu m alpha-particles. Two running conditions for pulsed-field gel-electrophoresis were chosen to give optimal separation of fragments either in the 225 kbp-5.7 Mbp range or the 0.3 kbp to 225 kbp range. Taking the total fraction of DNA migrating into the gel as a measure of fragmentation, the RBE for dsb induction was less than 1.0 for both molecular weight regions studied. The total yields of dsb were 8.2 x 10(-9) dsb/Gy/bp for X-rays and 7.8 x 10(-9) dsb/Gy/bp for a-particles, measured using a random breakage model. Analysis of the RBE of alpha-particles versus molecular weight gave a different response. In the 0.4 Mbp-57 Mbp region the RBE was less than 1.0; however, below 0.4 Mbp the RBE increased above 1.0. The frequency distributions of fragment sizes were found to differ from those predicted by a model assuming random breakage along the length of the DNA and the differences were greater for alpha-particles than for X-rays. An excess of fragments induced by a single-hit mechanism was found in the 8-300 kbp region and for X-rays and alpha-particles these corresponded to an extra 0.8 x 10(-9) and 3.4 x 10(-9) dsb/bp/Gy, respectively. Thus for every alpha-particle track that induces a dsb there is a 44% probability of inducing a second break within 300 kbp and for electron tracks the probability is 10%. This study shows that the distribution of damage from a high LET alpha-particle track is significantly different from that observed with low LET X-rays. In particular, it suggests that the fragmentation patterns of irradiated DNA may be related to the higher-order chromatin repealing structures found in intact cells.