52 resultados para wave power


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two Liquid crystal-based reflectarrays that operate at 100 GHz and 125 GHz are presented. The first prototype (100 GHz) is used to validate the modeling and the design procedure proposed for this class of antenna. Experimental validation of the beam scanning is carried out by measuring the received power in a quasi-optical test bench, which is able to rotate the receiver in the horizontal plane. These results are used to design a second prototype antenna (125 GHz) which exhibits 2D beam scanning capabilities with a large bandwidth and scanning range that is sufficient for radar and communications applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the coming decade installed offshore wind capacity is expected to expand rapidly. This will be both technically and economically challenging. Precise wind resource assessment is one of the more imminent challenges. It is more difficult to assess wind power offshore than onshore due to the paucity of representative wind speed data. Offshore site-specific data is less accessible and is far more costly to collect. However, offshore wind speed data collected from sources such as wave buoys, remote sensing from satellites, national weather ships, and coastal meteorological stations and met masts on barges and platforms may be extrapolated to assess offshore wind power. This study attempts to determine the usefulness of pre-existing offshore wind speed measurements in resource assessment, and presents the results of wind resource estimation in the Atlantic Ocean and in the Irish Sea using data from two offshore meteorological buoys. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent band passes were found to be out of phase with one another, displaying phase angles of 6.°12, 5.°82,and 15.°97 between the 4170 Å continuum–G-band,G-band–Na i D1, and Na i D1–Ca ii K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 Wm‑2. The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wave energy converters, by their nature, extract large amounts of energy
from incident waves. If the industry is to progress such that wave energy
becomes a significant provider of power in the future, large wave farms will
be required. Presently, consenting for these sites is a long and problematic
process, mainly due to a lack of knowledge of the potential environmental
impacts. Accurate numerical modelling of the effect of wave energy extraction
on the wave field and subsequent evaluation of changes to coastal
processes is therefore required. Modelling the wave field impact is also
necessary to allow optimum wave farm configurations to be determined.
This thesis addresses the need for more accurate representation of wave
energy converters in numerical models so that the effect on the wave field,
and subsequently the coastal processes, may be evaluated. Using a hybrid
of physical and numerical modelling (MIKE21 BW and SW models) the
effect of energy extraction and operation of a WEC array on the local wave
climate has been determined.
The main outcomes of the thesis are: an improved wave basin facility, in
terms of wave climate homogeneity, reducing the standard deviation of wave
amplitude by up to 50%; experimental measurement of the wave field around
WEC arrays, showing that radiated waves account for a significant proportion
of the wave disturbance; a new representation method of WECs for use
with standard numerical modelling tools, validated against experimental
results.
The methodology and procedures developed here allow subsequent evaluation
of changes to coastal processes and sediment transport due to WEC
arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed a quiet Sun region with the Swedish 1-meter Solar Telescope (SST) equipped with CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, H-alpha line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period-bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as "magnetic shadows". These also show enhanced power close to the photosphere, traditionally referred to as"power halos". The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore if small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs) and Rapid Redshifted Excursions (RREs), can strongly influence the power-maps. The short and finite lifetime of these events strongly affects all powermaps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously, can have a dominant effect on the formation ofthe power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect in the power suppression around 3 minutes and wave interaction may play a key role here. Our high cadence observations reveal that flows, waves and shocks manifest in presence of magnetic fields to form a non-linear magnetohydrodynamic system.