54 resultados para verification algorithm
Resumo:
The coefficients of an echo canceller with a near-end section and a far-end section are usually updated with the same updating scheme, such as the LMS algorithm. A novel scheme is proposed for echo cancellation that is based on the minimisation of two different cost functions, i.e. one for the near-end section and a different one for the far-end section. The approach considered leads to a substantial improvement in performance over the LMS algorithm when it is applied to both sections of the echo canceller. The convergence properties of the algorithm are derived. The proposed scheme is also shown to be robust to noise variations. Simulation results confirm the superior performance of the new algorithm.
Resumo:
A family of stochastic gradient algorithms and their behaviour in the data echo cancellation work platform are presented. The cost function adaptation algorithms use an error exponent update strategy based on an absolute error mapping, which is updated at every iteration. The quadratic and nonquadratic cost functions are special cases of the new family. Several possible realisations are introduced using these approaches. The noisy error problem is discussed and the digital recursive filter estimator is proposed. The simulation outcomes confirm the effectiveness of the proposed family of algorithms.
Resumo:
The least-mean-fourth (LMF) algorithm is known for its fast convergence and lower steady state error, especially in sub-Gaussian noise environments. Recent work on normalised versions of the LMF algorithm has further enhanced its stability and performance in both Gaussian and sub-Gaussian noise environments. For example, the recently developed normalised LMF (XE-NLMF) algorithm is normalised by the mixed signal and error powers, and weighted by a fixed mixed-power parameter. Unfortunately, this algorithm depends on the selection of this mixing parameter. In this work, a time-varying mixed-power parameter technique is introduced to overcome this dependency. A convergence analysis, transient analysis, and steady-state behaviour of the proposed algorithm are derived and verified through simulations. An enhancement in performance is obtained through the use of this technique in two different scenarios. Moreover, the tracking analysis of the proposed algorithm is carried out in the presence of two sources of nonstationarities: (1) carrier frequency offset between transmitter and receiver and (2) random variations in the environment. Close agreement between analysis and simulation results is obtained. The results show that, unlike in the stationary case, the steady-state excess mean-square error is not a monotonically increasing function of the step size. (c) 2007 Elsevier B.V. All rights reserved.