66 resultados para tunable
Effects of Charge Location on the Absorptions and Lifetimes of Protonated Tyrosine Peptides in Vacuo
Resumo:
Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge chromophore distance. Hence, in this study, we aim to assess how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18-crown-6-ether (CE). The CE targets the ammonium group by forming internal ionic hydrogen bonds and limits the folding of the peptide. In the tripeptide, the distance between the chromophore and the backbone ammonium is enlarged relative to that in the dipeptide. Experiments were performed in an electrostatic ion storage ring using a tunable laser system, and action spectra based on lifetime measurements were obtained in the range from 210 to 310 nm. The spectra are all quite similar though there seems to be some changes in the absorption band between 210 and 250 nm, while in the lower energy band all ions had a maximum absorption at similar to 275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model is no longer operative.
Resumo:
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.
Resumo:
A reconfigurable reflectarray which exploits the dielectric anisotropy of liquid crystals (LC) has been designed to operate in the frequency range from 96 to 104 GHz. The unit cells are composed of three unequal length parallel dipoles placed above an LC substrate. The reflectarray has been designed using an accurate model which includes the effects of anisotropy and inhomogeneity. An effective permittivity that accounts for the real effects of the LC has also been used to simplify the analysis and design of the unit cells. The geometrical parameters of the cells have been adjusted to simultaneously improve the bandwidth, maximize the tunable phase-range and reduce the sensitivity to the angle of incidence. The performance of the LC based unit cells has been experimentally evaluated by measuring the reflection amplitude and phase of a reflectarray consisting of 52x54 identical cells. The good agreement between measurements and simulations validate the analysis and design techniques and demonstrate the capabilities of the proposed reflectarray to provide beam scanning in F band.
Resumo:
Demonstration of a tunable conductivity of the LaAlO3/SrTiO3 interfaces drew significant attention to the development of oxide electronic structures where electronic confinement can be reduced to the nanometer range. While the mechanisms for the conductivity modulation are quite different and include metal insulator phase transition and surface charge writing, generally it is implied that this effect is a result of electrical modification of the LaAlO3 surface (either due to electrochemical dissociation of surface adsorbates or free charge deposition) leading to the change in the two-dimensional electron. gas (2DEG) density at the LaAlO3/SrTiO3 (LAO/STO) interface. In this paper, using piezoresponse force microscopy we demonstrate a switchable electromechanical response of the LAO overlayer, which we attribute to the motion of oxygen vacancies through the LAO layer thickness. These electrically induced reversible changes in bulk stoichiometry of the LAO layer are a signature of a possible additional mechanism for nanoscale oxide 2DEG control on LAO/STO interfaces.
Resumo:
Close-packed monolayers of 20 nm Au nanoparticles are self-assembled at hexane/water interfaces and transferred to elastic substrates. Stretching the resulting nanoparticle mats provides active and reversible tuning of their plasmonic properties, with a clear polarization dependance. Both uniaxial and biaxial strains induce strong blue shifts in the plasmonic resonances. This matches theoretical simulations and indicates that plasmonic coupling at nanometer scale distances is responsible for the observed spectral tuning. Such stretch-tunable metal nanoparticle mats can be exploited for the development of optical devices, such as flexible colour filters and molecular sensors. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683535]
Resumo:
The nonlinear properties of metallodielectric DBRs are investigated via optical pump-probe techniques using a widely tunable, dual-colour, high-repetition rate, ultrafast setup. As a consequence of the Bragg-arranged multilayers, the electric field penetrates to different depths of the nanostructure at different excitation resonances, strongly enhancing the intrinsic nonlinear response of the metal in comparison with bulk films. The analyzed spectral response of these structures reveals how their nonlinear behavior is dominated by the pump-induced modification of the metal dielectric function. Fitting the simulated changes of the optical resonances using transfer-matrix methods matches experiment well, and shows the key effects of the spectral dependence of the spatial mode profiles.
Resumo:
By enabling subwavelength light localization and strong electromagnetic field enhancement, plasmonic biosensors have opened up a new realm of possibilities for a broad range of chemical and biological sensing applications owing to their label-free and real-time attributes. Although significant progress has been made, many fundamental and practical challenges still remain to be addressed. For instance, the plasmonic biosensors are nonselective sensing platforms; they are not well-suited to provide information regarding conformation or chemical fingerprint of unknown biomolecules. Furthermore, tunability of the plasmonic resonance in visible frequency regime is still limited; this will prevent their efficient and reproducible exploitation in single-molecule sensitivity. Here, we show that by engineering geometry of plasmonic metamaterials,1 consisting of periodic arrays of artificial split-ring resonators (SRRs), the plasmonic resonance of metamaterials could be tuned to visible-near infrared regimes (Vis-NIR) such that it allows parallel acquisition of optical transmission and highly surface-enhanced Raman (SERS) spectra from large functionalized SRR arrays. The Au SRRs were designed in form of alphabet letters (U, V, S, H, Y) with various line width (from 80 to 30 nm). By tailoring their size and shape, plasmonic resonance wavelength of the SRRs could be actively tuned so that it gives the strongest SERS effect under given excitation energy and polarization for biological and organic molecules. On the other hand, the plasmonic tunability was also achieved for a given SRR pattern by tuning the laser wavelength to obtain the highest electromagnetic field enhancement. The geometry- and laser-tunable channels typically provide an electromagnetic field enhancement as high as 20 times. This will provide the basis of versatile and multichannel devices for identification of different conformational states of Guanine-rich DNA, detection of a cancer biomarker nucleolin, and femtomolar sensitivity detection of food and drink additives. These results show that the tunable Vis-IR metamaterials are very versatile biosensing platforms and suggest considerable promise in genomic research, disease diagnosis, and food safety analysis.
Resumo:
Analysis of molecular interaction and conformational dynamics of biomolecules is of paramount importance in understanding of their vital functions in complex biological systems, disease detection, and new drug development. Plasmonic biosensors based upon surface plasmon resonance and localized surface plasmon resonance have become the predominant workhorse for detecting accumulated biomass caused by molecular binding events. However, unlike surface-enhanced Raman spectroscopy (SERS), the plasmonic biosensors indeed are not suitable tools to interrogate vibrational signatures of conformational transitions required for biomolecules to interact. Here, we show that highly tunable plasmonic metamaterials can offer two transducing channels for parallel acquisition of optical transmission and sensitive SERS spectra at the biointerface, simultaneously probing the conformational states and binding affinity of biomolecules, e.g. G-quadruplexes, in different environments. We further demonstrate the use of the metamaterials for fingerprinting and detection of arginine-glycine-glycine domain of nucleolin, a cancer biomarker which specifically binds to a G-quadruplex, with the picomolar sensitivity.
Resumo:
Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, transformable and switchable optics. Herein, by precisely controlling the size, symmetry and topology of alphabetical metamaterials with U, S, Y, H, U-bar and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (Vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of electronic and magnetic surface plasmon polaritons, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons thus essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely-propagating light. Based on the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency.
Resumo:
Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates that use specific conformation modulation of a guanine- and thymine- rich DNA, while the optical readout is enabled by the tunable alphabetical metamaterials, which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). By computational and experimental investigations, we present a comprehensive solution to tailor the plasmonic responses of MetaSERS with respect to the metamaterial geometry, excitation energy, and polarization. Our tunable MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions.
Resumo:
An electronically tunable reflection polarizer which exploits the dielectric anisotropy of nematic liquid crystals (LC) has been designed, fabricated and measured in a frequency band centered at 130 GHz. The phase agile polarizing mirror converts an incident slant 45° signal upon reflection to right hand circular (RHCP), orthogonal linear (-45 °) or left hand circular (LHCP) polarization depending on the value of the voltage biasing the LC mixture. In the experimental set-up this is achieved by applying a low frequency bias voltage of 0 V, 40 V and 89 V respectively, across the cavity containing the LC material.
Resumo:
We address the propagation of a single photon pulse with two polarization components, i.e., a polarization qubit, in an inhomogeneously broadened "phaseonium" \Lambda-type three-level medium. We combine some of the non-trivial propagation effects characteristic for this kind of coherently prepared systems and the controlled reversible inhomogeneous broadening technique to propose several quantum information processing applications, such as a protocol for polarization qubit filtering and sieving as well as a tunable polarization beam splitter. Moreover, we show that, by imposing a spatial variation of the atomic coherence phase, an effcient quantum memory for the incident polarization qubit can be also implemented in \Lambda-type three-level systems.
Resumo:
We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays.
Resumo:
The fluorophore-spacer1-receptor1-spacer2-receptor2 system (where receptor2 alone is photoredox-inactive) shows ionically tunable proton-induced fluorescence off-on switching, which is reminiscent of thermionic triode behavior. This also represents a new extension to modular switch systems based on photoinduced electron transfer (PET) towards the emulation of analogue electronic devices.
Resumo:
We present a new formulation of the correlated electron-ion dynamics (CEID) scheme, which systematically improves Ehrenfest dynamics by including quantum fluctuations around the mean-field atomic trajectories. We show that the method can simulate models of nonadiabatic electronic transitions and test it against exact integration of the time-dependent Schrodinger equation. Unlike previous formulations of CEID, the accuracy of this scheme depends on a single tunable parameter which sets the level of atomic fluctuations included. The convergence to the exact dynamics by increasing the tunable parameter is demonstrated for a model two level system. This algorithm provides a smooth description of the nonadiabatic electronic transitions which satisfies the kinematic constraints (energy and momentum conservation) and preserves quantum coherence. The applicability of this algorithm to more complex atomic systems is discussed.