73 resultados para thyroglobulin antibody
Resumo:
Three hundred and seventy-six patients attending their general practitioner with cutaneous warts at five health centres in Northern Ireland were screened for human papilloma virus (HPV) types 1 and 2 IgM antibody using an indirect immunofluorescence test. Eight-eight (23.4%) patients were positive for HPV type 1 IgM and 156 (41.5%) for HPV type 2 IgM. HPV 1 IgM antibody was significantly more likely to be associated with plantar warts than warts elsewhere (P less than 0.0001). HPV 2 IgM was present in 45 (34.1%) patients with plantar warts and 99 (45.6%) patients with warts at other sites (P = 0.1). Evidence of multiple infection by HPV types 1 and 2 was demonstrated by the finding of HPV 1 and 2 IgM antibodies in the sera of 16 (4.3%). HPV 4 was found in only 1 out of 30 biopsies and HPV 4 IgM was undetectable in 50 randomly chosen sera.
Resumo:
An immunoaffinity chromatographic (IAC) method for the selective extraction and concentration of 13 organophosphorus pesticides (OPs, including coumaphos, parathion, phoxim, quinalphos, dichlofenthion, triazophos, azinphos-ethyl, phosalone, isochlorthion, parathion-methyl, cyanophos, disulfoton, and phorate) prior to analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. The IAC column was prepared by covalently immobilizing a monoclonal antibody with broad specificity for OPs on CNBr-activated Sephrose 4B. The column capacity ranged from 884 to 2641 ng/mL of gel. The optimum elution solvent was 0.01 M phosphate-buffered saline containing 80% methanol. The breakthrough volume of the IAC column was found to be 400 mL. Recoveries of OPs from spiked environmental samples by IAC cleanup and HPLC-MS/MS analysis ranged from 60.2 to 107.1%, with a relative standard deviation below 11.1%. The limit of quantitation for 13 OPs ranged from 0.01 to 0.13 ng/mL (ng/g). The application of IAC cleanup coupled to HPLC-MS/MS in real environmental samples demonstrated the potential of this method for the determination of OP residues in environmental samples at trace levels.
Resumo:
A sensitive and specific monoclonal ELISA for the determination of tissue bound furazolidone metabolite 3-amino-2-oxazolidinone (AOZ) is described. The procedure enables the detection of AOZ in matrix supernatant after homogenisation, protease treatment, acid hydrolysis and derivatisation of AOZ released from the tissue by o-nitrobenzaldehyde. The formed p-nitrophenyl 3-amino-2-oxazolidinone (NPAOZ) is determined by ELISA calibrated with matrix-matched standards in the concentration range of 0.05-5.0 mu g l(-1). The assay was validated according to criteria set down by Commission Decision 2002/657/EC for the performance and validation of analytical methods for chemical residues. Detection capability, set on the basis of acceptance of no false negative results, was 0.4 mu g kg(-1) for shrimp, poultry, beef and pork muscle. This sensitivity approaches the established confirmatory LC-MS/MS able to quantify tissue-bound AOZ at levels as low as 0.3 mu g kg(-1). An excellent correlation of results obtained by ELISA and LC/MS-MS within the concentration range 0-32.1 mu g kg(-1) was found in the naturally contaminated shrimp samples (r = 0.999, n = 8). A similar con-elation was found for the incurred poultry samples within the concentration range of 0-10.5 mu g kg(-1) (r = 0.99, n = 8). (c) 2005 Elsevier B.V All rights reserved.
Resumo:
A heterologous competitive indirect enzyme-linked immunosorbent assay (ciELISA) for the determination of the furaltadone metabolite 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) was developed. AMOZ was derivatised with 2-(4-formylphenoxy) acetic acid or 2-(3-formylphenoxy) acetic acid to obtain two novel immunizing haptens. The ability of these haptens in producing specific polyclonal antibodies against the nitrophenyl derivative of AMOZ (NPAMOZ) was compared with that of traditional immunizing haptens (derivatised AMOZ with 3-carboxybenzaldehyle or 4-carboxybenzaldehyle). The results indicated that the novel immunizing haptens were able to produce antibodies with almost a two-fold improvement in sensitivity of the ciELISA for NPAMOZ in comparison with the existing antibody based ELISAs. The differences in sensitivity were explained by the molecular modeling of the lowest energy conformations of NPAMOZ and the haptens. Another novel hapten, derivatised AMOZ with 2-oxoacetic acid, was synthesized and used as a heterologous coating hapten. The results showed that this strategy of using only a partial structure of the target molecule as the coating hapten was able to obtain a two to three-fold improvement in sensitivity. This study provided a modern approach for the development of an immunoassay with improved sensitivity for the metabolites of nitrofuran antibiotics. © 2012 Elsevier B.V. All rights reserved.
Resumo:
An IgM mouse monoclonal antibody (McAb) Bf4 was produced to a surface polysaccharide of Bacteroides fragilis NCTC 9343. Immunoblotting showed that McAb Bf4 reacted strongly with a high molecular mass structure which was sensitive to oxidation with periodate but resisted protease treatment. An inhibition enzyme-linked immunosorbent assay (ELISA) indicated that McAb Bf4 did not cross react with the sixteen Bacteroides species and strains tested. Cells of B. fragilis NCTC 9343 recovered from the various interfaces of a Percoll discontinuous density gradient were tested in the inhibition ELISA. Bacteria from the 0-20%, 20-40% and 40-60% interfaces inhibited the ELISA; however, cells from the 60-80% interface did not. Electron microscopy with immunogold labelling showed that McAb Bf4 did not react with the extracellular fibrous network on bacteria recovered from the 0-20% interface, or the extracellular electron dense layer on cells from the 60-80% interface; however, it was associated with a surface structure on cells from the 20-40% interface. Growth in vivo did not enrich for bacteria with this structure.
Resumo:
Bacteroides fragilis is a constituent of the normal resident microbiota of the human intestine and is the gram-negative obligately anaerobic bacterium most frequently isolated from clinical infection. Surface polysaccharides are implicated as potential virulence determinants. We present evidence of within strain immunochemical variation of surface polysaccharides in populations that are noncapsulate by light microscopy as determined by monoclonal antibody labelling. Expression of individual epitopes can be enriched from a population of an individual strain by use of immunomagnetic beads. Also, individual colonies in which either >94% or 94% of the bacteria carry a given epitope, there is no enrichment for other epitopes recognized by different polysaccharide-specific monoclonal antibodies. This intrastrain variation has important implications for the development of potential vaccines or immunodiagnostic tests.
Resumo:
In February 1993, the group of Klaus Mosbach published their milestone study in Nature where, for the first time, non-covalent molecular imprints were employed in a competitive binding assay. In this seminal piece of work, and also for the first time, they refer to molecularly imprinted polymers as being ‘antibody mimics’ and hypothesised that these synthetic materials could one day provide ‘a useful, general alternative to antibodies’. This perspective article examines how far we have come in the 20 years since this publication in terms of realising this hypothesis and poses the question of whether we actually need molecularly imprinted polymers to be a general alternative to antibodies.
Resumo:
meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been investigated by encapsulating the compound in a hydrogel-based chitosan/alginate nanoparticle formulation. Nanoparticles of 560 nm in diameter entrapping 9.1 µg of TMP per mg of formulation were produced and examined in cell-based assays. These particles were endocytosed into human colorectal carcinoma HCT116 cells and elicited a more potent photocytotoxic effect than free drug. Antibodies targeting death receptor 5 (DR5), a cell surface apoptosis-inducing receptor up-regulated in various types of cancer and found on HCT116 cells, were then conjugated onto the particles. The conjugated antibodies further enhanced uptake and cytotoxic potency of the nanoparticle. Taken together, these results show that antibody-conjugated chitosan/alginate nanoparticles significantly enhanced the therapeutic effectiveness of entrapped TMP. This novel approach provides a strategy for providing targeted site-specific delivery of TMP and other photosensitizer drugs to treat colorectal tumors using PDT.
Resumo:
PURPOSE. This study evaluated the effect of transforming growth factor (TGF)-ß2 and anti-TGF-ß2 antibody in a rodent model of posterior capsule opacification (PCO). METHODS. An extracapsular lens extraction (ECLE) was performed in 72 Sprague-Dawley rats. At the end of the procedure, 10 µL TGF-ß2 (TGF-ß2-treated group), fetal calf serum (FCS)/phosphate- buffered saline (PBS; FCS/PBS-treated control group), a human monoclonal TGF-ß2 antibody (anti-TGF-ß2-treated group), or a null control IgG4 antibody (null antibody-treated control group) was injected into the capsule. Animals were killed 3 and 14 days postoperatively. Eyes were evaluated clinically prior to euthanatization, then enucleated and processed for light microscopy and immunohistochemistry afterward. PCO was evaluated clinically and histopathologically. Student's t-test and ? were used to assess differences between groups. RESULTS. There were no statistically significant clinical or histopathological differences in degree of PCO between the TGF-ß2- and FCS/PBS-treated groups at 3 and 14 days after ECLE. Nor were there differences between the anti-TGF-ß2- and the null antibody-treated groups, with the exception of the histopathology score for capsule wrinkling 3 days after ECLE (P = 0.02). a-Smooth-muscle actin staining was observed in the lens capsular bag only in areas where there was close contact with the iris. CONCLUSIONS. No sustained effect of TGF-ß2 or anti-TGF-ß2 antibody on PCO was found in rodents at the dose and timing administered in this study. Iris cells may play a role in the process of epithelial mesenchymal transition linked to PCO. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance (SPR) biosensor. The AuNPs were synthesized and functionalized with HS-OEG(3)-COOH by self assembling technique. Thereafter, the HS-OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti IgG antibody to form an enzyme-immunogold complex. Characterizations were performed by several methods: UV-vis absorption, DLS, HR-TEM and Fr-IR. The Au-anti IgG-HRP complex has been applied in enhancement of SPR immunoassay using a sensor chip constructed by 1:9 molar ratio of HS-OEG(6)-COOH and HS-OEG(3)-OH for detection of anti-GAD antibody. As a result, AuNPs showed their enhancement as being consistent with other previous studies while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. The limit of detection was found as low as 0.03 ng/ml of anti-GAD antibody (or 200 fM) which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.
Resumo:
Introduction: In this study, colloidal gold nanoparticle and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation of 3,3'-diaminobenzidine (DAB) in the presence of H2O2 were used to enhance the signal obtained from the surface plasmon resonance biosensor.
Methods: The colloidal gold nanoparticle was synthesized as described by Turkevitch et al., and their surface was firstly functionalized with HS(CH2)11(OCH2CH2)3COOH (OEG3¬-COOH) by self assembling technique. Thereafter, those OEG3-COOH functionalized nanoparticles were covalently conjugated with horseradish peroxidase (HRP) and anti-IgG antibody (specific to the Fc portion of all human IgG subclasses) to form an enzyme-immunogold complex. Characterization was performed by several methods: UV-Vis absorption, dynamic light scattering (DLS), transmission electron microscopy (TEM) and FTIR. The as-prepared enzyme-immunogold complex has been applied in enhancement of SPR immunoassay. A sensor chip used in the experiment was constructed by using 1:10 molar ratio of HS(CH2)11(OCH2CH2)6COOH and HS(CH2)11(OCH2CH2)3OH. The capture protein, GAD65 (autoantigen) which is recognized by anti-GAD antibody (autoantibody) in the sera of insulin-dependent diabetes mellitus patients, was immobilized onto the 1:10 surface via biotin-streptavidin interaction.
Results and conclusions: In the research, we reported the influences of gold nanoparticle and enzyme precipitation on the enhancement of SPR signal. Gold nanoparticle showed its enhancement as being consistent with other previous studies, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the SPR detection. As the results, anti-GAD antibody could be detected at pg/ml level which is far higher than that of commercial ELISA detection kit. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
Mixed infections are one of the major therapeutic challenges, as the current strategies have had limited success. One of the most common and widespread conditions of mixed infection is respiratory syncytial virus-mediated pathology of the respiratory tract in children. There is a dire need for the development of novel therapeutic approaches during mixed infections. Therapeutic intravenous immunoglobulin preparations, obtained from plasma pools of healthy donors have been used in immune deficiencies. This study was thus designed to characterize the functional efficacy of RSV-specific antibodies in IVIg. To explore the functional ability of these affinity-purified RSV-specific antibodies, the antibody-dependent and complement dependent cytotoxicity was determined using peripheral cells of healthy donors. This study demonstrates the existence of highly potent RSV-specific antibodies in IVIg preparations and provides the basis for the use of IVIg as broad-spectrum protective shield to RSV-infected children during mixed infections
Resumo: