86 resultados para sulphur tolerance
Resumo:
Intravenous (i.v.) administration of autoantigen effectively induces Ag-specific tolerance against experimental autoimmune encephalomyelitis (EAE). We and others have shown enhanced EAE severity in mice lacking IL-12 or its receptor, strongly suggesting an immunoregulatory effect of IL-12 signaling. To examine the role of IL-12 responsiveness in autoantigen-induced tolerance in EAE, we administered autoantigen i.v. in two distinct treatment regimes to wildtype and IL-12Rβ2(-/-) mice, immunized to develop EAE. Administration at the induction phase suppressed EAE in wildtype and IL-12Rβ2(-/-) mice however the effect was somewhat less potent in the absence of IL-12Rβ2. Expression of pro-inflammatory cytokines such as IFN-γ, IL-17 and IL-2, was inhibited in wild-type tolerized mice but less so in IL-12Rβ2(-/-) mice. I.v. antigen was also effective in suppressing disease in both genotypes when given during the clinical phase of disease with similar CNS inflammation, demyelination and peripheral inflammatory cytokine profiles observed in both genotypes. There was however a mild impact of a lack of IL-12 signaling on Treg induction during tolerance induction compared to WT mice in this treatment regime. These findings show that the enhanced severity of EAE that occurs in the absence of IL-12 signaling can be effectively overcome by i.v. autoantigen, indicating that this therapeutic effect is not primarily mediated by IL-12 and that i.v. tolerance could be a powerful approach in suppressing severe and aggressive MS.
Resumo:
Hopanoids are pentacyclic triterpenoids that are thought to be bacterial surrogates for eukaryotic sterols, such as cholesterol, acting to stabilize membranes and to regulate their fluidity and permeability. To date, very few studies have evaluated the role of hopanoids in bacterial physiology. The synthesis of hopanoids depends on the enzyme squalene-hopene cyclase (Shc), which converts the linear squalene into the basic hopene structure. Deletion of the 2 genes encoding Shc enzymes in Burkholderia cenocepacia K56-2, BCAM2831 and BCAS0167, resulted in a strain that was unable to produce hopanoids, as demonstrated by gas chromatography and mass spectrometry. Complementation of the Delta shc mutant with only BCAM2831 was sufficient to restore hopanoid production to wild-type levels, while introducing a copy of BCAS0167 alone into the Delta shc mutant produced only very small amounts of the hopanoid peak. The Delta shc mutant grew as well as the wild type in medium buffered to pH 7 and demonstrated no defect in its ability to survive and replicate within macrophages, despite transmission electron microscopy (TEM) revealing defects in the organization of the cell envelope. The Delta shc mutant displayed increased sensitivity to low pH, detergent, and various antibiotics, including polymyxin B and erythromycin. Loss of hopanoid production also resulted in severe defects in both swimming and swarming motility. This suggests that hopanoid production plays an important role in the physiology of B. cenocepacia.
Resumo:
A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.
Resumo:
The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose -0.1-0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.
Resumo:
In this study, the genetic mapping of the tolerance of root growth to 13.3 muM arsenate [As(V)] using the BalaxAzucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice.
Resumo:
Arsenate tolerance is conferred by suppression of the high-affinity phosphate/arsenate uptake system, which greatly reduces arsenate influx in a number of higher plant species. Despite this suppressed uptake, arsenate-tolerant plants can still accumulate high levels of As over their lifetime, suggesting that constitutive detoxification mechanisms may be required. Phytochelatins are thiol-rich peptides, whose production is induced by a range of metals and metalloids including arsenate. This study provides evidence for the role of phytochelatins in the detoxification of arsenate in arsenate-tolerant Holcus lanatus. Elevated levels of phytochelatin were measured in plants with a range of tolerance to arsenate at equivalent levels of arsenate stress, measured as inhibition of root growth. The results suggest that arsenate tolerance in H. lanatus requires both adaptive suppression of the high-affinity phosphate uptake system and constitutive phytochelatin production.
Resumo:
A major concern in stiffener run-out regions, where the stiffener is terminated due to a cut-out, intersecting rib, or some other structural feature which interrupts the load path, is the relatively weak skin–stiffener interface in the absence of mechanical fasteners. More damage tolerant stiffener run-outs are clearly required and these are investigated in this paper. Using a parametric finite element analysis, the run-out region was optimised for stable debonding crack growth. The modified run-out, as well as a baseline configuration, were manufactured and tested. Damage initiation and propagation was investigated in detail using state-of-the-art monitoring equipment including Acoustic Emission and Digital Image Correlation. As expected, the baseline configuration failed catastrophically. The modified run-out showed improved crack-growth stability, but subsequent delamination failure in the stiffener promptly led to catastrophic failure.
Resumo:
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.
Resumo:
The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate toler- ance in wild grass Holcus lanatus genotypes screened from the same habitat.
De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide poly- morphism (SNP) calling were conducted on RNA extracted from H.lanatus. Roche 454 sequencing data were assembled into c. 22 000 isotigs, and paired-end Illumina reads for phosphorus-starved (P) and phosphorus-treated (P+) genovars of tolerant (T) and nontoler- ant (N) phenotypes were mapped to this reference transcriptome.
Heatmaps of the gene expression data showed strong clustering of each P+/P treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA- binding protein and transposable elements.
A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP pro- files, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.
Resumo:
The response of arsenate and non-tolerant Holcus lanatus L. phenotypes, where tolerance is achieved through suppression of high affinity phosphate/arsenate root uptake, was investigated under different growth regimes to investigate why there is a polymorphism in tolerance found in populations growing on uncontaminated soil. Tolerant plants screened from an arsenic uncontaminated population differed, when grown on the soil from the populations origin, from non-tolerants, in their biomass allocation under phosphate fertilization: non-tolerants put more resources into tiller production and down regulated investment in root production under phosphate fertilization while tolerants tillered less effectively and did not alter resource allocation to shoot biomass under phosphate fertilization. The two phenotypes also differed in their shoot mineral status having higher concentrations of copper, cadmium, lead and manganese, but phosphorus status differed little, suggesting tight homeostasis. The polymorphism was also widely present (40%) in other wild grass species suggesting an important ecological role for this gene that can be screened through plant root response to arsenate.