56 resultados para subduction zone
Resumo:
South Africa's southwestern Cape occupies a critical transition zone between Southern Hemisphere temperate (winter) and tropical (summer) moisture-bearing systems. In the recent geological past, it has been proposed that the relative influence of these systems may have changed substantially, but little reliable evidence regarding regional hydroclimates and rainfall seasonality exists to refine or substantiate the understanding of long-term dynamics. In this paper we present a mid-to late Holocene multi-proxy record of environmental change from a rock hyrax midden from Katbakkies Pass, located along the modern boundary between the winter and summer rainfall zones. Derived from stable carbon and nitrogen isotopes, fossil pollen and microcharcoal, these data provide a high resolution record of changes in humidity, and insight into changes in rainfall seasonality. Whereas previous work concluded that the site had generally experienced only subtle environmental change during the Holocene, our records indicate that significant, abrupt changes have occurred in the region over the last 7000 years. Contrary to expectations based on the site's location, these data indicate that the primary determinant of changes in humidity is summer rather than winter rainfall variability, and its influence on drought season intensity and/or length. These findings are consistent with independent records of upwelling along the southern and western coasts, which indicate that periods of increased humidity are related to increased tropical easterly flow. This substantially refines our understanding of the nature of temperate and tropical circulation system dynamics in SW Africa, and how changes in their relative dominance have impacted regional environments during the Holocene.
Resumo:
Climate variability along the 600 km Tibbitt to Contwyoto Winter Road (TCWR) in central Northwest Territories is poorly understood. With the transportation of goods from Yellowknife to the mines projected to increase significantly as new mines open, it is critical that planners and mine developers have reasonable data on the future viability of the road, as alternative transportation costs (e.g. air transport) are prohibitively high.
The research presented here is part of a paleoclimate study based on the analysis of multiple proxy data derived from freeze cores in lakes along the TCWR.
Resumo:
Methane-derived authigenic carbonate (MDAC) mound features at the Codling Fault Zone (CFZ), located in shallow waters (50-120m) of the western Irish Sea were investigated and provide a comparison to deep sea MDAC settings. Carbonates consisted of aragonite as the major mineral phase, with δ13C depletion to -50‰ and δ18O enrichment to~2‰. These isotope signatures, together with the co-precipitation of framboidal pyrite confirm that anaerobic oxidation of methane (AOM) is an important process mediating methane release to the water column and the atmosphere in this region. 18O-enrichment could be a result of MDAC precipitation with seawater in colder than present day conditions, or precipitation with 18O-enriched water transported from deep petroleum sources. The 13C depletion of bulk carbonate and sampled gas (-70‰) suggests a biogenic source, but significant mixing of thermogenic gas and depletion of the original isotope signature cannot be ruled out. Active seepage was recorded from one mound and together with extensive areas of reduced sediment, confirms that seepage is ongoing. The mounds appear to be composed of stacked pavements that are largely covered by sand and extensively eroded. The CFZ mounds are colonized by abundant Sabellaria polychaetes and possible Nemertesia hydroids, which benefit indirectly from available hard substrate. In contrast to deep sea MDAC settings where seep-related macrofauna are commonly reported, seep-specialist fauna appear to be lacking at the CFZ. In addition, unlike MDAC in deep waters where organic carbon input from photosynthesis is limited, lipid biomarkers and isotope signatures related to marine planktonic production (e.g. sterols, alkanols) were most abundant. Evidence for microbes involved in AOM was limited from samples taken; possibly due to this dilution effect from organic matter derived from the photic zone, and will require further investigation.
Resumo:
Although the synapsin phosphoproteins were discovered more than 30 years ago and are known to play important roles in neurotransmitter release and synaptogenesis, a complete picture of their functions within the nerve terminal is lacking. It has been shown that these proteins play an important role in the clustering of synaptic vesicles (SVs) at active zones and function as modulators of synaptic strength by acting at both pre- and postdocking levels. Recent studies have demonstrated that synapsins migrate to the endocytic zone of central synapses during neurotransmitter release, which suggests that there are additional functions for these proteins in SV recycling.
Resumo:
Intersectin is a multidomain dynamin-binding protein implicated in numerous functions in the nervous system, including synapse formation and endocytosis. Here, we demonstrate that during neurotransmitter release in the central synapse, intersectin, like its binding partner dynamin, is redistributed from the synaptic vesicle pool to the periactive zone. Acute perturbation of the intersectin-dynamin interaction by microinjection of either intersectin antibodies or Src homology 3 (SH3) domains inhibited endocytosis at the fission step. Although the morphological effects induced by the different reagents were similar, antibody injections resulted in a dramatic increase in dynamin immunoreactivity around coated pits and at constricted necks, whereas synapses microinjected with the GST (glutathione S-transferase)-SH3C domain displayed reduced amounts of dynamin in the neck region. Our data suggest that intersectin controls the amount of dynamin released from the synaptic vesicle cluster to the periactive zone and that it may regulate fission of clathrin-coated intermediates.
Resumo:
Rock rinds have been used for half a century to date glacial deposits and recently inroads have been developed to use nuclides to provide absolute ages of weathering rinds in pebble clasts. Although maximum and minimum rind thicknesses have helped to elucidate time since deposition and allowed stratigraphic division of deposits at glacial rank, little has been done to investigate the wealth of mineral degradation, growth of alteration products and biomineralization that occur in these weathered crusts. In some cases the mass of microbe-mineral intergrowth is nearly present on a 50%/50% basis, with the biotic mass intergrown with mineral matter to such an extent that it probably controls pH and redox phenomena that act as accelerators in the weathering process. Assuming weathering time spans of 2 × 106 years or more for a complete cycle, eventual clast decomposition is the end product. Here we present evidence of microbe-clast intergrowth from selected sites of Pleistocene age (~70 ka to 2.0 Ma) in the lower Afroalpine of Mt. Kenya and hypothesize about its role in rock decomposition and fossilization of biotic end-members. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
A timely, and uniquely historical, look at how war turns soldiers, and all of us, into tourists. Holidays in the Danger Zone exposes the mundane and everyday entanglements between two seemingly opposed worlds—warfare and tourism. Debbie Lisle shows how a tourist sensibility shapes the behavior of soldiers in warespecially the experiences of Western military forces in “exotic” settings. This includes not only R&R but also how battlefields themselves become landscapes of leisure and tourism. It further explores how a military sensibility shapes the development of tourism in the postwar context, from “Dark Tourism” (engaging with displays of conflict and atrocity) to exhibitions of conflict in museums and at memorial sites, as well as in advertising, film, journals, guidebooks, blogs, and photography. Focused on how war and tourism reinforce prevailing modes of domination, Holidays in the Danger Zone critically examines the long historical arc of the war-tourism nexus from nineteenth-century imperialism to World War I and World War II, from the Cold War to globalization and the War on Terror.