67 resultados para stochastic differentia equations
Resumo:
A new linear equations method for calculating the R-matrix, which arises in the R-matrix-Floquet theory of multiphoton processes, is introduced. This method replaces the diagonalization of the Floquet Hamiltonian matrix by the solution of a set of linear simultaneous equations which are solved, in the present work, by the conjugate gradient method. This approach uses considerably less computer memory and can be readily ported onto parallel computers. It will thus enable much larger problems of current interest to be treated. This new method is tested by applying it to three-photon ionization of helium at frequencies where double resonances with a bound state and autoionizing states are important. Finally, an alternative linear equations method, which avoids the explicit calculation of the R-matrix by incorporating the boundary conditions directly, is described in an appendix.
Resumo:
Mixture of Gaussians (MoG) modelling [13] is a popular approach to background subtraction in video sequences. Although the algorithm shows good empirical performance, it lacks theoretical justification. In this paper, we give a justification for it from an online stochastic expectation maximization (EM) viewpoint and extend it to a general framework of regularized online classification EM for MoG with guaranteed convergence. By choosing a special regularization function, l1 norm, we derived a new set of updating equations for l1 regularized online MoG. It is shown empirically that l1 regularized online MoG converge faster than the original online MoG .
Resumo:
1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.
Resumo:
Extreme arid regions in the worlds' major deserts are typified by quartz pavement terrain. Cryptic hypolithic communities colonize the ventral surface of quartz rocks and this habitat is characterized by a relative lack of environmental and trophic complexity. Combined with readily identifiable major environmental stressors this provides a tractable model system for determining the relative role of stochastic and deterministic drivers in community assembly. Through analyzing an original, worldwide data set of 16S rRNA-gene defined bacterial communities from the most extreme deserts on the Earth, we show that functional assemblages within the communities were subject to different assembly influences. Null models applied to the photosynthetic assemblage revealed that stochastic processes exerted most effect on the assemblage, although the level of community dissimilarity varied between continents in a manner not always consistent with neutral models. The heterotrophic assemblages displayed signatures of niche processes across four continents, whereas in other cases they conformed to neutral predictions. Importantly, for continents where neutrality was either rejected or accepted, assembly drivers differed between the two functional groups. This study demonstrates that multi-trophic microbial systems may not be fully described by a single set of niche or neutral assembly rules and that stochasticity is likely a major determinant of such systems, with significant variation in the influence of these determinants on a global scale.
Resumo:
We investigate the acceleration of particles by Alfven waves via the second-order Fermi process in the lobes of giant radio galaxies. Such sites are candidates for the accelerators of ultra-high-energy cosmic rays (UHECR). We focus on the nearby Fanaroff-Riley type I radio galaxy Centaurus A. This is motivated by the coincidence of its position with the arrival direction of several of the highest energy Auger events. The conditions necessary for consistency with the acceleration time-scales predicted by quasi-linear theory are reviewed. Test particle calculations are performed in fields which guarantee electric fields with no component parallel to the local magnetic field. The results of quasi-linear theory are, to an order of magnitude, found to be accurate at low turbulence levels for non-relativistic Alfven waves and at both low and high turbulence levels in the mildly relativistic case. We conclude that for pure stochastic acceleration via Alfven waves to be plausible as the generator of UHECR in Cen A, the baryon number density would need to be several orders of magnitude below currently held upper limits.
Resumo:
Raman spectra in the range of the totally symmetric stretching mode of the [PF6]− anion, νs(PF6), have been measured for 1-alkyl-3-methylimidazolium ionic liquids [CnC1im][PF6], for n = 4, 6, and 8, as a function of pressure at room temperature. The ionic liquids [C6C1im][PF6] and [C8C1im][PF6] remain in an amorphous phase up to 3.5 GPa, in contrast to [C4C1im][PF6], whichcrystallizes above ∼0.5 GPa. Equations of state based either on a group contribution model or Carnahan-Starling-van der Waals model have been used to estimate the densities of the ionic liquids at high pressures. The shifts of the vibrational frequency of νs(PF6) with density observed in [C6C1im][PF6] and in [C8C1im][PF6] have been calculated by a hard-sphere model of a pseudo-diatomic solute under short-range repulsive interactions with the neighboring particles. The stochastic model of Kubo for vibrational dephasing has been used to obtain the amplitude of vibrational frequency fluctuation, ⟨Δω 2⟩, and the relaxation time of frequency fluctuation, τ c , as a function of density by Raman band shape analysis of the νs(PF6) mode of [C6C1im][PF6] and [C8C1im][PF6].
Resumo:
Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).
Resumo:
For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.
Resumo:
In recent years, the issue of life expectancy has become of utmost importance to pension providers, insurance companies, and government bodies in the developed world. Significant and consistent improvements in mortality rates and hence life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data to anticipate future life expectancy and hence quantify the costs of providing for future aging populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age, and cohort and forecast these trends into the future by using standard statistical methods. These approaches rely on the assumption that structural breaks in the trend do not exist or do not have a significant impact on the mortality forecasts. Recent literature has started to question this assumption. In this paper, we carry out a comprehensive investigation of the presence or of structural breaks in a selection of leading mortality models. We find that structural breaks are present in the majority of cases. In particular, we find that allowing for structural break, where present, improves the forecast result significantly.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Stochastic Analysis of Saltwater Intrusion in Heterogeneous Aquifers using Local Average Subdivision
Resumo:
This study investigates the effects of ground heterogeneity, considering permeability as a random variable, on an intruding SW wedge using Monte Carlo simulations. Random permeability fields were generated, using the method of Local Average Subdivision (LAS), based on a lognormal probability density function. The LAS method allows the creation of spatially correlated random fields, generated using coefficients of variation (COV) and horizontal and vertical scales of fluctuation (SOF). The numerical modelling code SUTRA was employed to solve the coupled flow and transport problem. The well-defined 2D dispersive Henry problem was used as the test case for the method. The intruding SW wedge is defined by two key parameters, the toe penetration length (TL) and the width of mixing zone (WMZ). These parameters were compared to the results of a homogeneous case simulated using effective permeability values. The simulation results revealed: (1) an increase in COV resulted in a seaward movement of TL; (2) the WMZ extended with increasing COV; (3) a general increase in horizontal and vertical SOF produced a seaward movement of TL, with the WMZ increasing slightly; (4) as the anisotropic ratio increased the TL intruded further inland and the WMZ reduced in size. The results show that for large values of COV, effective permeability parameters are inadequate at reproducing the effects of heterogeneity on SW intrusion.
Resumo:
We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.
Resumo:
We examine the representation of judgements of stochastic independence in probabilistic logics. We focus on a relational logic where (i) judgements of stochastic independence are encoded by directed acyclic graphs, and (ii) probabilistic assessments are flexible in the sense that they are not required to specify a single probability measure. We discuss issues of knowledge representation and inference that arise from our particular combination of graphs, stochastic independence, logical formulas and probabilistic assessments.
Resumo:
One of the most widely used techniques in computer vision for foreground detection is to model each background pixel as a Mixture of Gaussians (MoG). While this is effective for a static camera with a fixed or a slowly varying background, it fails to handle any fast, dynamic movement in the background. In this paper, we propose a generalised framework, called region-based MoG (RMoG), that takes into consideration neighbouring pixels while generating the model of the observed scene. The model equations are derived from Expectation Maximisation theory for batch mode, and stochastic approximation is used for online mode updates. We evaluate our region-based approach against ten sequences containing dynamic backgrounds, and show that the region-based approach provides a performance improvement over the traditional single pixel MoG. For feature and region sizes that are equal, the effect of increasing the learning rate is to reduce both true and false positives. Comparison with four state-of-the art approaches shows that RMoG outperforms the others in reducing false positives whilst still maintaining reasonable foreground definition. Lastly, using the ChangeDetection (CDNet 2014) benchmark, we evaluated RMoG against numerous surveillance scenes and found it to amongst the leading performers for dynamic background scenes, whilst providing comparable performance for other commonly occurring surveillance scenes.