88 resultados para steam turbine


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5 M NH4NO3) and acid leaching using 1 M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH3-TPD and TGA. Ion-exchange with NH4+ of natural zeolites results in the exchange of the Na+ and Ca2+ cations and the partial exchange of the Fe3+ and Mg2+ cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full-scale 34 m composite wind turbine blade was tested to failure under flap-wise loading. Local displacement measurement equipment was developed and displacements were recorded throughout the loading history.

Ovalization of the load carrying box girder was measured in the full-scale test and simulated in non-linear FE-calculations. The nonlinear Brazier effect is characterized by a crushing pressure which causes the ovalization. To capture this effect, non-linear FE-analyses at different scales were employed. A global non-linear FE-model of the entire blade was prepared and the boundaries to a more detailed sub-model were extracted. The FE-model was calibrated based on full-scale test measurements.

Local displacement measurements helped identify the location of failure initiation which lead to catastrophic failure. Comparisons between measurements and FE-simulations showed that delamination of the outer skin was the initial failure mechanism followed by delamnination buckling which then led to collapse. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a louver-cooling scheme on a flat plate was analyzed using a detached-eddy-simulation turbulence model. It was assumed that the louver-cooling scheme was tested in a wind tunnel with the mainstream flow velocity of 20 m/s, equivalent to a Reynolds number of 16,200, based on the jet diameter. Turbulence closure was achieved by a realizable k-e-based detached-eddy-simulation turbulence model. Solutions of two blowing ratios of 0.5 and 1 were successfully obtained by running parallel on 16 nodes on a computer cluster. The flowfields were found to be highly unsteady and oscillatory in nature, with the maximum fluctuation of the adiabatic effectiveness as high as 15% of the time-averaged value. It is shown that the fluctuations in the adiabatic effectiveness are mainly caused by the spanwise fluctuation of the coolant jet and the unsteady vortical structures created by the interaction of the jet and the mainstream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.