94 resultados para spectral redistribution
Resumo:
The use of strong-field (i.e. intensities in excess of 10(13) Wcm(-2)) few-cycle ultrafast (durations of 10 femtoseconds or less) laser pulses to create, manipulate and image vibrational wavepackets is investigated. Quasi-classical modelling of the initial superposition through tunnel ionization, wavepacket modification by nonadiabatically altering the nuclear environment via the transition dipole and the Stark effect, and measuring the control outcome by fragmenting the molecule is detailed. The influence of the laser intensity on strong-field ultrafast wavepacket control is discussed in detail: by modifying the distribution of laser intensities imaged, we show that focal conditions can be created that give preference to this three-pulse technique above processes induced by the pulses alone. An experimental demonstration is presented, and the nuclear dynamics inferred by the quasi-classical model discussed. Finally, we present the results of a systematic investigation of a dual-control pulse scheme, indicating that single vibrational states should be observable with high fidelity, and the populated state defined by varying the arrival time of the two control pulses. The relevance of such strong-field coherent control methods to the manipulation of electron localization and attosecond science is discussed.
Resumo:
We have undertaken a 330-360 GHz molecular line survey of the halo gas surrounding the hot core associated with G34.26+0.15. In contrast to our molecular line survey of the hot core itself, where 338 lines from at least 38 species were detected, only 18 lines from 9 species were detected in the halo. The lines are mainly single transitions of simple di atomic and triatomic molecules. Lower limits to their column densities have been evaluated by an LTE method. In the case of methanol, where four transitions were detected, the rotation temperature and column density have been evaluated by the rotation diagram technique. We have modified the previous depth-dependent chemical model developed in Paper II to calculate the column densities observed along a general line of sight drawn through the model cloud. The model is also extended to produce beam-averaged column densities for better comparison with those observed. We compare the model column densities with those observed and make recommendations for future depth-dependent chemical modelling of hot cores.
Resumo:
We have surveyed the frequency band 218.30-263.55 GHz toward the core positions N and M and the quiescent cloud position NW in the Sgr B2 molecular cloud using the Swedish-ESO Submillimetre Telescope. In total 1730, 660, and 110 lines were detected in N, M, and NW, respectively, and 42 different molecular species were identified. The number of unidentified lines are 337, 51, and eight. Toward the N source, spectral line emission constitutes 22% of the total detected flux in the observed band, and complex organic molecules are the main contributors. Toward M, 14% of the broadband flux is caused by lines, and SO2 is here the dominant source of emission. NW is relatively poor in spectral lines and continuum. In this paper we present the spectra together with tables of suggested line identifications.
Resumo:
We describe a detailed depth-and time-dependent model of the molecular cloud associated with the ultracompact H II region G 34.3+0.15. Previous work on observations of NH3 and CS indicates that the molecular cloud has three distinct physical components:- an ultracompact hot core, a compact hot core and an extended halo. We have used the physical parameters derived from these observations as input to our detailed chemical kinetic modelling. The results of the model calculations are discussed with reference to the different chemistries occuring in each component and are compared with abundances derived from our recent spectral line survey of G 34.3+0.15 (Paper I).
Resumo:
A 330--360 GHz spectral survey of the hot molecular core associated with the 'cometary' ultracompact HII region G 34.3+/-0.15 observed with the James Clerk Maxwell Telescope has detected 338 spectral lines from at least 35 distinct chemical species plus 19 isotopomers. 70 lines remain unidentified. Chemical abundance and rotation temperature have been determined by rotation diagram analysis for 12 species, and lower limits to abundance found for 38 others.
Resumo:
Purpose
This study was designed to investigate methods to help patients suffering from unilateral tinnitus synthesizing an auditory replica of their tinnitus.
Materials and methods
Two semi-automatic methods (A and B) derived from the auditory threshold of the patient and a method (C) combining a pure tone and a narrow band-pass noise centred on an adjustable frequency were devised and rated on their likeness over two test sessions. A third test evaluated the stability over time of the synthesized tinnitus replica built with method C, and its proneness to merge with the patient's tinnitus. Patients were then asked to try and control the lateralisation of this single percept through the adjustment of the tinnitus replica level.
Results
The first two tests showed that seven out of ten patients chose the tinnitus replica built with method C as their preferred one. The third test, performed on twelve patients, revealed pitch tuning was rather stable over a week interval. It showed that eight patients were able to consistently match the central frequency of the synthesized tinnitus (presented to the contralateral ear) to their own tinnitus, which leaded to a unique tinnitus percept. The lateralisation displacement was consistent across patients and revealed an average range of 29dB to obtain a full lateral shift from the ipsilateral to the contralateral side.
Conclusions
Although spectrally simpler than the semi-automatic methods, method C could replicate patients' tinnitus, to some extent. When a unique percept between synthesized tinnitus and patients' tinnitus arose, lateralisation of this percept was achieved.
Resumo:
Laser-driven proton and ion acceleration is an area of increasing research interest given the recent development of short pulse-high intensity lasers. Several groups have reported experiments to understand whether a laser-driven beam can be applied for radiobiological purposes and in each of these, the method to obtain dose and spectral analysis was slightly different. The difficulty with these studies is that the very large instantaneous dose rate is a challenge for commonly used dosimetry techniques, so that other more sophisticated procedures need to be explored. This paper aims to explain a method for obtaining the energetic spectrum and the dose of a laser-driven proton beam irradiating a cell dish used for radiobiology studies. The procedure includes the use of a magnet to have charge and energy separation of the laser-driven beam, Gafchromic films to have information on dose and partially on energy, and a Monte Carlo code to expand the measured data in order to obtain specific details of the proton spectrum on the cells. Two specific correction factors have to be calculated: one to take into account the variation of the dose response of the films as a function of the proton energy and the other to obtain the dose to the cell layer starting from the dose measured on the films. This method, particularly suited to irradiation delivered in a single laser shot, can be applied in any other radiobiological experiment performed with laser-driven proton beams, with the only condition that the initial proton spectrum has to be at least roughly known. The method was tested in an experiment conducted at Queen's University of Belfast using the TARANIS laser, where the mean energy of the protons crossing the cells was between 0.9 and 5 MeV, the instantaneous dose rate was estimated to be close to 10(9) Gy s(-1) and doses between 0.8 and 5 Gy were delivered to the cells in a single laser shot. The combination of the applied corrections modified the initial estimate of dose by up to 40%.
Resumo:
We prove that unital surjective spectral isometries on certain non-simple unital C*-algebras are Jordan isomorphisms. Along the way, we establish several general facts in the setting of semisimple Banach algebras.
Resumo:
We present spectroscopy and photometry of the He-rich supernova (SN) 2008ax. The early-time spectra show prominent P-Cygni H lines, which decrease with time and disappear completely about 2 months after the explosion. In the same period He I lines become the most prominent spectral features. SN 2008ax displays the ordinary spectral evolution of a Type IIb supernova. A stringent pre-discovery limit constrains the time of the shock breakout of SN 2008ax to within only a few hours. Its light curve, which peaks in the B band about 20 d after the explosion, strongly resembles that of other He-rich core-collapse supernovae. The observed evolution of SN 2008ax is consistent with the explosion of a young Wolf-Rayet (of WNL type) star, which had retained a thin, low-mass shell of its original H envelope. The overall characteristics of SN 2008ax are reminiscent of those of SN 1993J, except for a likely smaller H mass. This may account for the findings that the progenitor of SN 2008ax was a WNL star and not a K supergiant as in the case of SN 1993J, that a prominent early-time peak is missing in the light curve of SN 2008ax, and that H alpha is observed at higher velocities in SN 2008ax than in SN 1993J.
Resumo:
We present the detailed spectral analysis of a sample of M33 B-type supergiant stars, aimed at the determination of their fundamental parameters and chemical composition. The analysis is based on a grid of non-LTE metal line-blanketed model atmospheres including the effects of stellar winds and spherical extension computed with the code FASTWIND. Surface abundance ratios of C, N, and O are used to discuss the chemical evolutionary status of each individual star. The comparison of observed stellar properties with theoretical predictions of massive star evolutionary models shows good agreement within the uncertainties of the analysis. The spatial distribution of the sample allows us to investigate the existence of radial abundance gradients in the disk of M33. The comparison of stellar and H II region O abundances ( based on direct determinations of the electron temperature of the nebulae) shows good agreement. Using a simple linear radial representation, the stellar oxygen abundances result in a gradient of -0.0145 +/- 0.005 dex arcmin(-1) (or -0.06 +/- 0.02 dex kpc(-1)) up to a distance equal to similar to 1.1 times the isophotal radius of the galaxy. A more complex representation cannot be completely discarded by our stellar sample. The stellar Mg and Si abundances follow the trend displayed by O abundances, although with shallower gradients. These differences in gradient slope cannot be explained at this point. The derived abundances of the three alpha-elements yield solar metallicity in the central regions of the disk of M33. A comparison with recent planetary nebula data from Magrini and coworkers indicates that the disk of M33 has not suffered from a significant O enrichment in the last 3 Gyr.
Resumo:
The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.
Resumo:
Target normal measurements of proton energy spectra from ultrathin (50-200 nm) planar foil targets irradiated by 10(19) W cm(-2) 40 fs laser pulses exhibit broad maxima that are not present in the energy spectra from micron thickness targets (6 mu m). The proton flux in the peak is considerably greater than the proton flux observed in the same energy range in thicker targets. Numerical modelling of the experiment indicates that this spectral modification in thin targets is caused by magnetic fields that grow at the rear of the target during the laser-target interaction.