59 resultados para silver nanocrystals
Resumo:
The electronic properties of CN adsorbed on Ag electrodes at different potentials have been studied by using the method of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations. It is shown that the binding of NCAg is dominated by both electrostatic and polarization effects derived from the charge of CN, and that the transfer of s charge from CN to silver is the largest donation contribution. The electrode potential influences this charge transfer process and the interaction between CN adsorbate and silver electrode. The results of quantum chemistry calculations fit well with the experimental data of in situ spectroscopic studies on the CN/Ag electrode systems. © 1991.
Resumo:
Uses of plants extracts are found to be more advantageous over chemical, physical and microbial (bacterial, fungal, algal) methods for silver nanoparticles (AgNPs) synthesis. In phytonanosynthesis, biochemical diversity of plant extract, non-pathogenicity, low cost and flexibility in reaction parameters are accounted for high rate of AgNPs production with different shape, size and applications. At the same time, care has to be taken to select suitable phytofactory for AgNPs synthesis based on certain parameters such as easy availability, large-scale nanosynthesis potential and non-toxic nature of plant extract. This review focuses on synthesis of AgNPs with particular emphasis on biological synthesis using plant extracts. Some points have been given on selection of plant extract for AgNPs synthesis and case studies on AgNPs synthesis using different plant extracts. Reaction parameters contributing to higher yield of nanoparticles are presented here. Synthesis mechanisms and overview of present and future applications of plant-extract-synthesized AgNPs are also discussed here. Limitations associated with use of AgNPs are summarised in the present review.
Resumo:
A prism coupling arrangement is used to excite surface plasmons at the surface of a thin silver aim and a photon scanning tunnelling microscope is used to detect the evanescent field above the silver surface. Excitation of the silver/ air mode of interest is performed at lambda(1) = 632 . 8 nm using a tightly focused beam, while the control of the tip is effected by exciting a counter-propagating surface plasmon field at a different wavelength. lambda(2) = 543 . 5 nm, using an unfocused beam covering a macroscopic area. Propagation of the red surface plasmon is evidenced by an exponential tail extending away from the launch site, but this feature is abruptly truncated if the surface plasmon encounters the edge of the silver film - there is no specularly reflected 'beam'. Importantly, the radiative decay of the surface mode at the film edge is observable only at larger tip-sample separations, emphasizing the importance of accessing the mesoscopic regime.
Resumo:
This paper describes the extraction of C5–C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf2N]) to form room temperature ionic liquids [Ag(olefin)x][Tf2N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf2N], 1-pentene showed the best separation performance while C7 and C8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C5 and C6, for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf2N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin)x][Tf2N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins.
Resumo:
Tetrahexahedral Pd nanocrystals (THH Pd NCs) were prepared on a glassy carbon electrode using a programmed square-wave potential electrodeposition method, and modified by Bi adatoms with a range of coverages via the cyclic voltammetry method. The reactivity of the catalysts prepared towards ethanol electrooxidation reaction (EOR) was studied in alkaline medium at various temperatures and under other conditions that practical fuel cells operate. Significant activity enhancements were observed for the Bi-modified THH Pd NCs with an optimum Bi coverage (θBi) of around 0.68 being obtained. Furthermore, it was found that increasing temperature from 25 ºC to 60 ºC enhances the reactivity significantly. The general kinetics data of EOR on Bi-decorated and bare THH Pd NCs have also been obtained, from the activation energy calculated based on Arrhenius plots, and compared. At the optimum Bi coverage, an enhancement in the activity of almost 3 times was achieved, and the corresponding activation energy was found to be reduced significantly.
Resumo:
This paper describes the extraction of C5-C8 linear α-olefins from olefin/paraffin mixtures of the same carbon number using silver(I)/N,N-dimethylbenzamide bis(trifluoromethylsulfonyl)imide ([Ag(DMBA)2][Tf2N]) or silver(I)/propylamine bis(trifluoromethylsulfonyl)imide ([Ag(PrNH2)2][Tf2N]) as the extracting agent. The separation performance of the system increased with increasing chain length. [Ag(DMBA)2][Tf2N] appeared to outperform [Ag(PrNH2)2][Tf2N] in terms of both selectivity and distribution coefficient. The [Ag(DMBA)2][Tf2N] system was successfully modeled using the universal quasi-chemical activity coefficient (UNIQUAC) model. These results support the potential future development of amine/amide-based ligands for producing soluble silver complexes useful for the separation of olefins from paraffins.
Resumo:
Dye-sensitized solar cells (DSCs) are promising alternatives to conventional silicon devices because of their simple fabrication procedure, low cost, and high efficiency. Platinum is generally used as a superior counter electrode (CE) material, but the disadvantages such as high cost and low abundance greatly restrict the large-scale application of DSCs. An efficient and sustainable way to overcome the limited supply of Pt is the development of high-efficiency Pt-free CE materials, which should possess both high electrical conductivity and superior electrocatalytic activity simultaneously. Herein, for the first time, a two-step strategy to synthesize ruthenium dioxide (RuO2) nanocrystals is reported, and it is shown that RuO2 catalysts exhibit promising electrocatalytic activity towards triiodide reduction, which results in comparable energy conversion efficiency to that of conventional Pt CEs. More importantly, by virtue of first-principles calculations, the catalytic mechanism of electrocatalysis for triiodide reduction on various CEs is investigated systematically and it is found that the electrochemical triiodide reduction reaction on RuO2 catalyst surfaces can be enhanced significantly, owing to the ideal combination of good electrocatalytic activity and high electrical conductivity.
Resumo:
Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully.
Resumo:
BARTON 1 has suggested that photoelectron interference patterns may be used directly as holograms to obtain atomic-resolution images of surface structures. Bulk structures have been obtained previously by this means from experimental patterns of high-energy Kikuchi(quasi-elastically scattered) and Auger electrons 2,3. Here we test the feasibility of this technique for determination of surface structures using Auger intensity patterns obtained 4,5 from iodine chemisorbed on a pseudomorphic silver monolayer on Pt{111}. By direct numerical holographic inversion, we obtain three-dimensional images which show that iodine adatoms are located in hollows of 3-fold symmetry on the surface. The images yield the site symmetry with good atomic resolution in the surface plane, but suffer from poor resolution along the Ag-I axis. We anticipate that data with better angular resolution obtained at low temperatures would improve the spatial resolution of such images.
Resumo:
Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and
Resumo:
Adequate silicon fertilization greatly boosts rice yield and mitigates biotic and abiotic stress, and improves grain quality through lowering the content of cadmium and inorganic arsenic. This review on silicon dynamics in rice considers recent advances in our understanding of the role of silicon in rice, and the challenges of maintaining adequate silicon fertility within rice paddy systems. Silicon is increasingly considered as an element required for optimal plant performance, particularly in rice. Plants can survive with very low silicon under laboratory/glasshouse conditions, but this is highly artificial and, thus, silicon can be considered as essential for proper plant function in its environment. Silicon is incorporated into structural components of rice cell walls were it increases cell and tissue rigidity in the plant. Structural silicon provides physical protection to plants against microbial infection and insect attack as well as reducing the quality of the tissue to the predating organisms. The abiotic benefits are due to silicon's effect on overall organ strength. This helps protect against lodging, drought stress, high temperature (through efficient maintenance of transpiration), and photosynthesis by protecting against high UV. Furthermore, silicon also protects the plant from saline stress and against a range of toxic metal stresses (arsenic, cadmium, chromium, copper, nickel and zinc). Added to this, silicon application decreases grain concentrations of various human carcinogens, in particular arsenic, antimony and cadmium. As rice is efficient at stripping bioavailable silicon from the soil, recycling of silicon rich rice straw biomass or addition of inorganic silicon fertilizer, primarily obtained from iron and steel slag, needs careful management. Silicon in the soil may be lost if the silicon-cycle, traditionally achieved via composting of rice straw and returning it to the land, is being broken. As composting of rice straw and incorporation of composted or non-composted straw back to land are resource intensive activities, these activities are declining due to population shifts from the countryside to cities. Processes that accelerate rice straw composting, therefore, need to be identified to aid more efficient use of this resource. In addition, rice genetics may help address declining available silicon in paddy soils: for example by selecting for characteristics during breeding that lead to an increased ability of roots to access recalcitrant silicon sources from soil and/or via selection for traits that aid the maintenance of a high silicon status in shoots. Recent advances in understanding the genetic regulation of silicon uptake and transport by rice plants will aid these goals.
Resumo:
MCF, NbMCF and TaMCF Mesostructured Cellular Foams were used as supports for platinum and silver (1 wt%). Metallic and bimetallic catalysts were prepared by grafting of metal species on APTMS (3-aminopropyltrimethoxysilane) and MPTMS (2-mercaptopropyltrimethoxysilane) functionalized supports. Characterizations by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF) spectroscopy, and in situ Fourier Transform Infrared (FTIR) spectroscopy allowed to monitor the oxidation state of metals and surface properties of the catalysts, in particular the formation of bimetallic phases and the strong metal–support interactions. It was evidenced that the functionalization agent (APTMS or MPTMS) influenced the metals dispersion, the type of bimetallic species and Nb/Ta interaction with Pt/Ag. Strong Nb–Ag interaction led to the reduction of niobium in the support and oxidation of silver. MPTMS interacted at first with Pt to form Pt–Ag ensembles highly active in CH3OH oxidation. The effect of Pt particle size and platinum–silver interaction on methanol oxidation was also considered. The nature of the functionalization agent strongly influenced the species formed on the surface during reaction with methanol and determined the catalytic activity and selectivity.