133 resultados para semantic patterns
Resumo:
Studies of biological invasions predominantly stress threats to biodiversity through the elimination and replacement of native species. However, we must realise that resident communities may often be capable of integrating invaders, leading to patterns of coexistence. Within the past ninety years, three freshwater amphipod species have invaded Northern Ireland the North American Gammarus tigrinus and Crangonyx pseudogracilis, plus the European G. pulex. These species have come into contact with the ubiquitous native species, G. duebeni celticus. This study examined spatiotemporal patterns of stability of single and mixed species assemblages in an invaded lake. Lough Beg and its associated rivers were surveyed in summer 1994 and winter 1995, and a selection of stations re-sampled in summer one and five years later. All possible combinations of the four amphipod species were found. Although species presence/absence was stable between seasons at the scale of the whole lough, it was extremely fluid at the scale of individual sites, 82% of which changed in species composition between seasons. Overall mean amphipod abundance was similar across 5 distinguishable habitat types, but there were differences in species compositions among these habitats. In addition, although co-occurrences of Gammarus species did not differ from random, there was a strong negative association between Gammarus spp. and C. pseudogracilis. This latter pattern was at least in part generated by the better tolerance of C. pseudogracilis to lower water quality. A review of previous studies indicates that the exclusion of C. pseudogracilis by Gammarus species from high water quality areas is likely to involve biotic interaction. Thus, overall, co-existence of the four species, which is clearly dynamic and scale-dependent, appears promoted by spatial and temporal habitat heterogeneity. However, biotic interactions may also play a role in local exclusions. Since the three introduced species have not eliminated the native species, and each successive invasion has not replaced the previous invader, this study demonstrates that freshwater invaders may integrate with native communities leading to coexistence and increased species diversity.
Resumo:
The seasonal activity of Leisler's bat Nyctalus leisleri and pipistrelle bats Pipistrellus spp. with respect to minimum bat numbers and habitat use were investigated in County Down, Northern Ireland using a driven transect from April 1998 to October 1998. Data were collected in lowland farmland near Belfast, Northern Ireland using two BatBox III bat detectors tuned to detect both species and species groups simultaneously. The number of bats/km increased during April, May and June, peaking in July and tailed off after this period. The main peak in July is assumed to reflect the occurrence of newly volant young. An increase in the number of pipistrelle social calls during August and September probably represented mating activity. Bat activity correlated with temperature in both N. leisleri and Pipistrellus spp., although bat numbers were independent of temperature after the middle of June. There was significant variation in habitat use by pipistrelle bats along roads over the study period. Pipistrelle bats were observed in greater numbers in areas of tree-line, cut hedge (
Resumo:
Despite being the model organism for plant molecular genetic studies, little is known about the origins and evolutionary history of extant natural populations of Arabidopsis thaliana. We have analysed phylogenetic relationships between worldwide populations of Arabidopsis using polymorphic chloroplast microsatellites. These highly variable markers have revealed previously undetected levels of cytoplasmic variation and confirm previous hypotheses of a recent and rapid expansion of the species from its centre of origin. Furthermore, the results seem to verify previous nuclear analyses that call into question the true origin of several individual Arabidopsis ecotypes.
Resumo:
In many bird species the sex ratio of adults is male-biased, which is likely to have consequences for the ecology as well as for the conservation of a species. For example, when some males remain unpaired in a population, there should be strong selection on behavioural traits that enhance pairing success. A surplus of males is also likely to have important implications for the interpretation of breeding bird survey data. In our study population of Nightingales Luscinia megarhynchos, about half of the males stayed unpaired, suggesting that the number of males encountered singing was greater than the number of breeding pairs. Furthermore, the detectability (the probability of encountering a male singing) of mated males was only two-thirds that of unmated males when censused in the morning or late in the breeding season. The relative detectability was more similar early in the season and during the twilight periods before sunrise and after sunset. Males that arrived earlier on the breeding grounds were more successful in attracting a mate than males arriving later. Some of the unmated males deserted their territories and prospected areas up to 4000 m distant, whereas others settled on the study site only late in the season and may actually have changed territories. We suggest that adult sex ratios and the time of the census should be taken into account when interpreting the results of breeding bird surveys.
Resumo:
Seasonal patterns of singing activity of male birds have been thoroughly studied, but little is known about how those patterns vary with time of day. Here, we censused mated and unmated male Nightingales (Luscinia megarhynchos) at four different hours of the day throughout the breeding cycle. In unmated males, singing activity increased until the young hatched in their neighborhood, and the seasonal variation was similar at each of the four hours of the day. In mated males, however, the seasonal patterns of singing activity differed between hours of the day. In morning (about the hour of egg-laying) and during the dusk chorus, the singing activity of mated males was strongly influenced by the females' reproductive state: singing activity was low before egg-laying and during incubation, but high during the egg-laying period. In the dawn chorus, however, singing activity showed a similar seasonal pattern in mated and unmated males and was high until late stages of the breeding cycle. Our results suggest that the social context influences singing behavior to a varying degree across the season, and that this variation also depends on time of day. The hour of data collection thus is an important but often neglected factor when seasonal changes of singing activity are studied.
Resumo:
In Ireland, the Middle to Late Bronze Age (1500-600 cal. B.C.) is characterised by alternating phases of prolific metalwork production (the Bishopsland and Dowris Phases) and apparent recessions (the Roscommon Phase and the Late Bronze Age-Iron Age transition). In this paper, these changes in material culture are placed in a socio-economic context by examining contemporary settlement and land-use patterns interpreted from the pollen record. The vegetation histories of six tephrochronologically-linked sites are presented that provide high-resolution and chronologically well-resolved insights into changes in landscape use over the Middle to Late Bronze Age. The records are compared with published pollen records in an attempt to discern if there are any trends of woodland clearance and abandonment from which changes in settlement patterns can be inferred. The results suggest that prolific metalworking industries correlate chronologically with expansive farming activity, which indicates that they were supported by a productive subsistence economy. Conversely, declines in metalwork production occur during periods when farming activity is generally less extensive and perhaps more centralised, and it is proposed that disparate socio-economic or –political factors, rather than a collapse of the subsistence economy, lies behind the demise of metalworking industries.
Resumo:
In this study we investigate the coordination between rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow joint-complex, while manipulating the intersegmental dynamics by means of a 2-degrees of freedom (df) robot arm. We hypothesized that constraints imposed by the structure of the neuromuscular-skeletal system would (1) result in predominant pattern(s) of coordination in the absence of interaction torques and (2) influence the capabilities of participants to exploit artificially induced interaction torques. Two experiments were conducted in which different conditions of interaction torques were applied on the SP-axis as a function of FE movements. These conditions promoted different patterns of coordination between the 2-df. Control trials conducted in the absence of interaction torques revealed that both the in-phase (supination synchronized with flexion) and the anti-phase (pronation synchronized with flexion) patterns were spontaneously established by participants. The predominance of these patterns of coordination is explained in terms of the mechanical action of bi-articular muscles acting at the elbow joint-complex, and in terms of the reflexes that link the activity of the muscles involved. Results obtained in the different conditions of interaction torques revealed that those neuromuscular-skeletal constraints either impede or favor the exploitation of intersegmental dynamics depending on the context. Interaction torques were indeed found to be exploited to a greater extent in conditions in which the profiles of interaction torques favored one of the two predominant patterns of coordination (i.e., in-phase or anti-phase) as opposed to other patterns of coordination (e.g., 90 degrees or 270 degrees). Those results are discussed in relation to recent studies reporting exploitation of interaction torques in the context of rhythmic movements.
Resumo:
The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination-pronation (SP) at the elbow-joint complex. Participants (N = 10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. That result provides evidence that the predominance of the in-phase pattern originates in the influence of neuro-muscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.
Resumo:
We investigated how the relative direction of limb movements in external space (iso- and non-isodirectionality), muscular constraints (the relative timing of homologous muscle activation) and the egocentric frame of reference (moving simultaneously toward/away the longitudinal axis of the body) contribute to the stability of coordinated movements. In the first experiment, we attempted to determine the respective stability of isodirectional and non-isodirectional movements in between-persons coordination. In a second experiment, we determined the effect of the relative direction in external space, and of muscular constraints, on pattern stability during a within-person bimanual coordination task. In the third experiment we dissociated the effects on pattern stability of the muscular constraints, relative direction and egocentric frame of reference. The results showed that (1) simultaneous activation of homologous muscles resulted in more stable performance than simultaneous activation of non-homologous muscles during within-subject coordination, and that (2) isodirectional movements were more stable than non-isodirectional movements during between-persons coordination, confirming the role of the relative direction of the moving limbs in the stability of bimanual coordination. Moreover, the egocentric constraint was to some extent found distinguishable from the effect of the relative direction of the moving limbs in external space, and from the effect of the relative timing of muscle activation. In summary, the present study showed that relative direction of the moving limbs in external space and muscular constraints may interact either to stabilize or destabilize coordination patterns. (C) 2003 Published by Elsevier B.V.
Resumo:
The present paper provides a historical note on the evolution of the behavioral study of interlimb coordination and the reasons for its success as a field of investigation in the past decades. Whereas the original foundations for this field of science were laid down back in the seventies, it has steadily grown in the past decades and has attracted the attention of various scientific disciplines. A diversity of topics is currently being addressed and this is also expressed in the present contributions to the special issue. The main theme is centered on the brain basis of interlimb coordination. On the one hand, this pertains to the study of the control and learning of patterns of interlimb coordination in clinical groups. On the other hand, basic neural approaches are being merged together with behavioral approaches to reveal the neural basis of interlimb coordination. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The control of movement is predicated upon a system of constraints of musculoskeletal and neural origin. The focus of the present study was upon the manner in which such constraints are adapted or superseded during the acquisition of motor skill. Individuals participated in five experimental sessions, ill which they attempted to produce abduction-adduction movements of the index finger in time with an auditory metronome. During each trial, the metronome frequency was increased in eight steps from an individually determined base frequency. Electromyographic (EMC) activity was recorded from first dorsal interosseous (FDI), first volar interosseous (FVI), flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC) muscles. The movements produced on the final day of acquisition more accurately matched the required profile, and exhibited greater spatial and temporal stability, than those generated during initial performance. Tn the early stages of skill acquisition, an alternating pattern of activation in FDI and FVI was maintained, even at the highest frequencies. Tn contrast, as the frequency of movement was increased, activity in FDS and EDC was either tonic or intermittent. As learning proceeded, alterations in recruitment patterns were expressed primarily in the extrinsic muscles (EDC and FDS). These changes took the form of increases in the postural role of these muscles, shifts to phasic patterns of activation, or selective disengagement of these muscles. These findings suggest that there is considerable flexibility in the composition of muscle synergies, which is exploited by individuals during the acquisition of coordination.
Resumo:
It is unclear how human immunodeficiency virus (HIV) type 1–specific immune responses in exposed seronegative (ESN) individuals differ from those in HIV-1–infected subjects. By use of overlapping peptides spanning Gag, Tat, Nef, Vif, Vpr, and Vpu, peripheral blood mononuclear cells from ESN individuals, their seropositive (SP) partners, and unexposed seronegative control subjects were screened for interferon-? production. Responses were more frequent (95.7% vs. 20%), of a higher magnitude (9-fold), and of wider breadth (median number of peptides recognized, 18 vs. 2.5) in SP than in ESN individuals. Peptides recognized by ESN individuals were less frequently recognized by their SP partners. SP subjects infrequently recognized peptides from Vif, and such responses were subdominant; among ESN individuals, this HIV-1 protein was most frequently recognized. Immunodominant peptides recognized by SP subjects tended to be from relatively conserved regions, whereas peptides recognized by ESN individuals were associated with slow disease progression.