75 resultados para scat analyses
Resumo:
Background: Increasing emphasis is being placed on the economics of health care service delivery - including home-based palliative care. Aim: This paper analyzes resource utilization and costs of a shared-care demonstration project in rural Ontario (Canada) from the public health care system's perspective. Design: To provide enhanced end-of-life care, the shared-care approach ensured exchange of expertise and knowledge and coordination of services in line with the understood goals of care. Resource utilization and costs were tracked over the 15 month study period from January 2005 to March 2006. Results: Of the 95 study participants (average age 71 years), 83 had a cancer diagnosis (87%); the non-cancer diagnoses (12 patients, 13%) included mainly advanced heart diseases and COPD. Community Care Access Centre and Enhanced Palliative Care Team-based homemaking and specialized nursing services were the most frequented offerings, followed by equipment/transportation services and palliative care consults for pain and symptom management. Total costs for all patient-related services (in 2007 CAN) were 1,625,658.07 - or 17,112.19 per patient/117.95 per patient day. Conclusion: While higher than expenditures previously reported for a cancer-only population in an urban Ontario setting, the costs were still within the parameters of the US Medicare Hospice Benefits, on a par with the per diem funding assigned for long-term care homes and lower than both average alternate level of care and hospital costs within the Province of Ontario. The study results may assist service planners in the appropriate allocation of resources and service packaging to meet the complex needs of palliative care populations. © 2012 The Author(s).
Resumo:
Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).
Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).
Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.
Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.
Resumo:
Ninety-one patients were studied serially for chimeric status following allogeneic stem cell transplantation (SCT) for severe aplastic anaemia (SAA) or Fanconi Anaemia (FA). Short tandem repeat polymerase chain reaction (STR-PCR) was used to stratify patients into five groups: (A) complete donor chimeras (n = 39), (B) transient mixed chimeras (n = 15) (C) stable mixed chimeras (n = 18), (D) progressive mixed chimeras (n = 14) (E) recipient chimeras with early graft rejection (n = 5). As serial sampling was not possible in Group E, serial chimerism results for 86 patients were available for analysis. The following factors were analysed for association with chimeric status: age, sex match, donor type, aetiology of aplasia, source of stem cells, number of cells engrafted, conditioning regimen, graft-versus-host disease (GvHD) prophylaxis, occurrence of acute and chronic GvHD and survival. Progressive mixed chimeras (PMCs) were at high risk of late graft rejection (n = 10, P <0.0001). Seven of these patients lost their graft during withdrawal of immunosuppressive therapy. STR-PCR indicated an inverse correlation between detection of recipient cells post-SCT and occurrence of acute GvHD (P = 0.008). PMC was a bad prognostic indicator of survival (P = 0.003). Monitoring of chimeric status during cyclosporin withdrawal may facilitate therapeutic intervention to prevent late graft rejection in patients transplanted for SAA.
Resumo:
Berlin high (BEH) and Berlin low (BEL) strains selected for divergent growth differ 3-fold in body weight. We aimed at examining muscle mass, which is a major contributor to body weight, by exploring anatomical characteristics of the soleus muscle, its fiber numbers and their cross sectional area (CSA), by analysing transcriptome of the gastrocnemius and by initiating quantitative trait locus (QTL) mapping. BEH muscles were 4-to-8 times larger compared to BEL strain. In sub-strain BEH+/+, mutant myostatin was replaced with a wild type allele, however, BEH+/+muscles still were 2-to-4 times larger compared to the BEL strain. BEH soleus contained 2-times more (P<0.0001) and 2-times larger in CSA (P<0.0001) fibers compared to BEL strain. In addition, soleus femoral attachment anomaly (SFAA) was observed in all BEL mice. One significant (chromosome 1) and four suggestive (chromosomes 3, 4, 6 and 9) muscle weight QTLs were mapped in 21-day old F2 intercross (n=296) between BEH and BEL strains. The frequency of SFAA incidence in the F2 and in the backcross to BEL strain (BCL) suggested the presence of more than one causative gene. Two suggestive SFAA QTLs were mapped in BCL, however, their peak markers were not associated with the phenotype in F2. RNA-Seq analysis revealed 2,148 differentially expressed (P<0.1) genes and 45,673 SNPs and >2,000 indels between BEH+/+ and BEL males. In conclusion, contrasting muscle traits, genomic and gene expression differences between BEH and BEL strains provide a promising model for the search of genes involved in muscle growth and musculoskeletal morphogenesis.
Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects
Resumo:
Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a computational framework based on finite element methods to simulate the fibre-embedding process using ultrasonic consolidation process. The computational approach comprises of a material model which takes into account thermal and acoustic softening effects and a friction model which indicates the realistic friction behaviour at the interfaces. The derived material model and developed friction model have been incorporated in finite element model. Using the implemented material and friction model, thermo-mechanical analyses of embedding of fibre in aluminium alloy 3003 has been performed. Effect of different process parameters, such as velocity of sonotrode, displacement amplitude of ultrasonic vibration and applied loads, is studied and compared with the experimental results. The presented work has specially focused on the quality of the developed weld which could be evaluated by the friction work and the coverage of the fibre which is estimated by the plastic flow around the fibre. The computed friction work obtained from the thermomechanial analyses performed in this study show a similar trend as that of the experimentally found fracture energies. © Springer-Verlag London Limited 2010.
Resumo:
Scytalidium thermophilum plays an important role in determining selectivity of compost produced for growing Agaricus bisporus. The objective of this study was to characterise S. thermophilum isolates by random amplified polymorphic DNA (RAPD) analysis and sequence analysis of internally transcribed spacer (ITS) regions of the rDNA, to assess the genetic variation exhibited by this species complex and to compare this with existing morphological and thermogravimetric data. RAPD analysis of 34 isolates from various parts of the world revealed two distinct groups, which could be separated on the basis of the differences in the banding patterns produced with five random primers. Nucleotide sequence analysis of the ITS region, which was ca 536 bp in length, revealed only very minor variation among S. thermophilum isolates examined. Several nucleotide base changes within this region demonstrated variation. Genetic distance values among type 1 and 2 S. thermophilum isolates, as determined by ITS sequence analysis, varied by a value of 0.005 %. Molecular analyses carried out in the present study would suggest that isolates within this species complex exhibit genetic differences which correlate well with morphological variation and thermogravimetric data previously determined.