83 resultados para rotational oscillation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational molding is a process used to manufacture hollow plastic products, and has been heralded as a molding method with great potential. Reduction of cycle times is an important issue for the rotational molding industry, addressing a significant disadvantage of the process. Previous attempts to reduce cycle times have addressed surface enhanced molds, internal pressure, internal cooling, water spray cooling, and higher oven air flow rates within the existing process. This article explores the potential benefits of these cycle time reduction techniques, and combinations of them. Recommendations on a best practice combination are made, based on experimental observations and resulting product quality. Applying the proposed molding conditions (i.e., a combination of surface-enhanced molds, higher oven flow rates, internal mold pressure, and water spray cooling), cycle time reductions of up to 70% were achieved. Such savings are very significant, inviting the rotomolding community to incorporate these techniques efficiently in an industrial setting. POLYM. ENG. SCI., 49:1846-1854, 2009. (C) 2009 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present simultaneous and continuous observations of the Halpha, Hbeta, He I D-3, Na I D-1,D-2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2.(d)8. Two large optical flares were observed, both showing an increase in the emission of Halpha, Ca II H K, Hbeta and He I D-3 and a strong filling-in of the Na I D-1, D-2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Halpha and He I D-3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence of 11-year Schwabe solar sunspot cycles, El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) were detected in an annual record of diatomaceous laminated sediments from anoxic Effingham Inlet, Vancouver Island, British Columbia. Radiometric dating and counting of annual varves dates the sediments from AD 1947-1993. Intact sediment slabs were X-rayed for sediment structure (lamina thickness and composition based on gray-scale), and subsamples were examined for diatom abundances and for grain size. Wavelet analysis reveals the presence of ~2-3, ~4.5, ~7 and ~9-12-year cycles in the diatom record and an w11e13 year record in the sedimentary varve thickness record. These cycle lengths suggest that both ENSO and the sunspot cycle had an influence on primary productivity and sedimentation patterns. Sediment grain size could not be correlated to the sunspot cycle although a peak in the grain size data centered around the mid-1970s may be related to the 1976-1977 Pacific climate shift, which occurred when the PDO index shifted from negative (cool conditions) to positive (warm conditions). Additional evidence of the PDO regime shift is found in wavelet and cross-wavelet results for Skeletonema costatum, a weakly silicified variant of S. costatum, annual precipitation and April to June precipitation. Higher spring (April/May) values of the North Pacific High pressure index during sunspot minima suggest that during this time, increased cloud cover and concomitant suppression of the Aleutian Low (AL) pressure system led to strengthened coastal upwelling and enhanced diatom production earlier in the year. These results suggest that the 11-year solar cycle, amplified by cloud cover and upwelling changes, as well as ENSO, exert significant influence on marine primary productivity in the northeast Pacific. The expression of these cyclic phenomena in the sedimentary record were in turn modulated by the phase of PDO, as indicated by the change in period of ENSO and suppression of the solar signal in the record after the 1976-1977 regime shift. © 2013 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly-fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This paper presents a measurement based method for the early detection of power system oscillations, with attention to mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet transform and support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in different frequency bands, while SVDD is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude or that are resonant can be alarmed to the system operator, to reduce the risk of system instability. Method evaluation is exemplified used real data from a chosen wind farm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In this study the Octavius detector 729 ionization chamber (IC) array with the Octavius 4D phantom was characterized for flattening filter (FF) and flattening filter free (FFF) static and rotational beams. The device was assessed for verification with FF and FFF RapidArc treatment plans.

Methods: The response of the detectors to field size, dose linearity, and dose rate were assessed for 6 MV FF beams and also 6 and 10 MV FFF beams. Dosimetric and mechanical accuracy of the detector array within the Octavius 4D rotational phantom was evaluated against measurements made using semiflex and pinpoint ionization chambers, and radiochromic film. Verification FF and FFF RapidArc plans were assessed using a gamma function with 3%/3 mm tolerances and 2%/2 mm tolerances and further analysis of these plans was undertaken using film and a second detector array with higher spatial resolution.

Results: A warm-up dose of >6 Gy was required for detector stability. Dose-rate measurements were stable across a range from 0.26 to 15 Gy/min and dose response was linear, although the device overestimated small doses compared with pinpoint ionization chamber measurements. Output factors agreed with ionization chamber measurements to within 0.6% for square fields of side between 3 and 25 cm and within 1.2% for 2 x 2 cm(2) fields. The Octavius 4D phantom was found to be consistent with measurements made with radiochromic film, where the gantry angle was found to be within 0.4. of that expected during rotational deliveries. RapidArc FF and FFF beams were found to have an accuracy of >97.9% and >90% of pixels passing 3%/3 mm and 2%/2 mm, respectively. Detector spatial resolution was observed to be a factor in determining the accurate delivery of each plan, particularly at steep dose gradients. This was confirmed using data from a second detector array with higher spatial resolution and with radiochromic film.

Conclusions: The Octavius 4D phantom with associated Octavius detector 729 ionization chamber array is a dosimetrically and mechanically stable device for pretreatment verification of FF and FFF RapidArc treatments. Further improvements may be possible through use of a detector array with higher spatial resolution (detector size and/or detector spacing). (C) 2013 American Association of Physicists in Medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the dynamics of two interacting bosons repeatedly scattering off a beam-splitter in a free oscillation atom interferometer. Using the interparticle scattering length and the beam-splitter probabilites as our control parameters, we show that even in a simple setup like this a wide range of strongly correlated quantum states can be created. This in particular includes the NOON state, which maximizes the quantum Fisher information and is a foremost state in quantum metrology. DOI: 10.1103/PhysRevA.87.043630

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, contributions of both local steric and remote baroclinic effects (i.e., steric variations external to the region of interest) to the inter-annual variability of winter sea level in the North Sea, with respect to the North Atlantic Oscillation (NAO), for the period of 1953–2010 are investigated. On inter-annual time scales in this period, the NAO is significantly correlated to sea level variations in the North Sea only in the winter months (December–March), while its correlation to sea temperature over much of the North Sea is only significant in January and February. The discrepancy in sea level between observations and barotropic tide and surge models forced by tides and local atmospheric forcing, i.e., local atmospheric pressure effects and winds, in the present study are found to be consistent with previous studies. In the North Sea, local thermosteric effects caused by thermal expansion play a minor role on winter-mean NAO related sea level variability compared with atmospheric forcing. This is particularly true in the southeastern North Sea where water depths are mostly less than 25 m. Our calculations demonstrate that the discrepancy can be mostly explained by remote baroclinic effects, which appear as water mass exchanges on the continental shelf and are therefore only apparent in ocean bottom pressure. In the North Sea, NAO related sea level variations seem to be a hybrid of barotropic and baroclinic processes. Hence, they can only be adequately modelled with three-dimensional baroclinic ocean models that include contributions of baroclinic effects and large-scale atmospheric forcing external to the region of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modal analysis is a popular approach used in structural dynamic and aeroelastic problems due to its efficiency. The response of a structure is compo
sed of the sum of orthogonal eigenvectors or modeshapes and corresponding modal frequencies. This paper investigates the importance of modeshapes on the aeroelastic response of the Goland wing subject to structural uncertainties. The wing undergoes limit cycle oscillations (LCO) as a result of the inclusion of polynomial stiffness nonlinearities. The LCO computations are performed using a Harmonic Balance approach for speed, the modal properties of the system are extracted from MSC NASTRAN. Variability in both the wing’s structure and the store centre of gravity location is investigated in two cases:- supercritical and subcritical type LCOs. Results show that the LCO behaviour is only sensitive to change in modeshapes when the nature of the modes are changing significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various grades of Thermoplastic Polyurethane (TPU) supplied by Bayer were studied to determine their suitability for the rotational moulding process. Following grinding, parts were produced using a variety of peak internal air temperatures and cooling rates. The tensile and impact properties of these parts were then analysed and it was found that both the grade and moulding conditions had a large bearing on the quality and mechanical strength of the part produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding.