90 resultados para radiographic images
Resumo:
BACKGROUND:
tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform.
METHODS:
a High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this study. Using an HP high performance cluster and a centralised dynamic load balancing approach, the simultaneous analysis of multiple tissue-cores were established. This was evaluated on Non-Small Cell Lung Cancer TMAs for complex analysis of tissue pattern and immunohistochemical positivity.
RESULTS:
the automated processing of a single TMA virtual slide containing 230 patient samples can be significantly speeded up by a factor of circa 22, bringing the analysis time to one minute. Over 90 TMAs could also be analysed simultaneously, speeding up multiplex biomarker experiments enormously.
CONCLUSIONS:
the methodologies developed in this paper provide for the first time a genuine high throughput analysis platform for TMA biomarker discovery that will significantly enhance the reliability and speed for biomarker research. This will have widespread implications in translational tissue based research.
Resumo:
Objectives: To improve the integration of MRI with radiotherapy treatment planning, our department fabricated a flat couch top for our MR scanner. Setting up using this couch top meant that the patients were physically higher up in the scanner and, posteriorly, a gap was introduced between the patient and radiofrequency coil.
Resumo:
Three-dimensional reconstruction from volumetric medical images (e.g. CT, MRI) is a well-established technology used in patient-specific modelling. However, there are many cases where only 2D (planar) images may be available, e.g. if radiation dose must be limited or if retrospective data is being used from periods when 3D data was not available. This study aims to address such cases by proposing an automated method to create 3D surface models from planar radiographs. The method consists of (i) contour extraction from the radiograph using an Active Contour (Snake) algorithm, (ii) selection of a closest matching 3D model from a library of generic models, and (iii) warping the selected generic model to improve correlation with the extracted contour.
This method proved to be fully automated, rapid and robust on a given set of radiographs. Measured mean surface distance error values were low when comparing models reconstructed from matching pairs of CT scans and planar X-rays (2.57–3.74 mm) and within ranges of similar studies. Benefits of the method are that it requires a single radiographic image to perform the surface reconstruction task and it is fully automated. Mechanical simulations of loaded bone with different levels of reconstruction accuracy showed that an error in predicted strain fields grows proportionally to the error level in geometric precision. In conclusion, models generated by the proposed technique are deemed acceptable to perform realistic patient-specific simulations when 3D data sources are unavailable.
Resumo:
In this paper we present a new method for simultaneously determining three dimensional (3-D) shape and motion of a non-rigid object from uncalibrated two dimensional (2- D) images without assuming the distribution characteristics. A non-rigid motion can be treated as a combination of a rigid rotation and a non-rigid deformation. To seek accurate recovery of deformable structures, we estimate the probability distribution function of the corresponding features through random sampling, incorporating an established probabilistic model. The fitting between the observation and the projection of the estimated 3-D structure will be evaluated using a Markov chain Monte Carlo based expectation maximisation algorithm. Applications of the proposed method to both synthetic and real image sequences are demonstrated with promising results.
Resumo:
Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human cancers. However, standard automated method in tumour detection on both routine histochemical and immunohistochemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and provides a possibility for fully automated IHC quantification.
Resumo:
For the majority of adults, the media constitute their main source of information about science and science-related matters impacting on society. To help prepare young people to engage with science in the media, teachers are being exhorted to equip their students with the knowledge, skills, and attitudes to respond critically to science-related news reports. Typically, such reports comprise not only text, but also visual elements. These images are not simply adjuncts to the written word; they are integral to meaning-making. Though science teachers make considerable use of newspaper images, they tend to view these representations unproblematically, underestimating their potential ambiguity, complexity, and role in framing media messages. They rarely aim to develop students’ ability to ‘read’, critically, such graphics. Moreover, research into how this might be achieved is limited and, consequently, research-informed guidance which could support this instruction is lacking. This paper describes a study designed to formulate a framework for such teaching. Science communication scholars, science journalists and media educators with acknowledged relevant expertise were surveyed to ascertain what knowledge, skills, and attitudes they deemed useful to engagement with science related news images. Their proposals were recast as learning intentions (instructional objectives), and science and English teachers collaborated to suggest which could be addressed with secondary school students and the age group best suited to their introduction. The outcome is an inventory of learning intentions on which teachers could draw to support their planning of instructional sequences aimed at developing students’ criticality in respect of the totality of science news reports.