238 resultados para prostaglandin synthase inhibitor
Resumo:
We demonstrate that SLPI can inhibit lipopolysaccharide-induced NF-kappaB activation in monocytes by preventing degradation of the key regulatory protein IkappaBalpha which is inefficiently degraded by the ubiquitin-proteasome pathway due to a direct effect of SLPI on the activity of this pathway. I designed this project and carried out all of the experiments.
Resumo:
The coronavirus main protease, Mpro, is considered a major target for drugs suitable to combat coronavirus infections including the severe acute respiratory syndrome (SARS). In this study, comprehensive HPLC- and FRET-substrate-based screenings of various electrophilic compounds were performed to identify potential Mpro inhibitors. The data revealed that the coronaviral main protease is inhibited by aziridine- and oxirane-2-carboxylates. Among the trans-configured aziridine-2,3-dicarboxylates the Gly-Gly-containing peptide 2c was found to be the most potent inhibitor.
Resumo:
The incidence of esophageal adenocarcinoma has increased in recent years, and Barrett's esophagus is a recognized risk factor. Gastroesophageal reflux of acid and/or bile is linked to these conditions and to reflux esophagitis. Inflammatory disorders can lead to carcinogenesis through activation of "prosurvival genes," including cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Increased expression of these enzymes has been found in esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Polymorphic variants in COX-2 and iNOS genes may be modifiers of risk of these conditions. In a population-based case-control study, we examined associations of the COX-2 8473 T>C and iNOS Ser 608 Leu (C>T) polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), and reflux esophagitis (n = 230) and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using TaqMan allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. The presence of at least one COX-2 8473 C allele was associated with a significantly increased risk of esophageal adenocarcinoma (adjusted odds ratio, 1.58; 95% confidence interval, 1.04-2.40). There was no significant association between this polymorphism and risk of Barrett's esophagus or reflux esophagitis or between the iNOS Ser 608 Leu polymorphism and risk of these esophageal conditions. Our study suggests that the COX-2 8473 C allele is a potential genetic marker for susceptibility to esophageal adenocarcinoma.
Resumo:
Driving high-level transgene expression in a tumour-specific manner remains a key requirement in the development of cancer gene therapy. We have previously demonstrated the strong anticancer effects of generating abnormally high levels of intracellular NO• following the overexpression of the inducible nitric oxide synthase (iNOS) gene. Much of this work has focused on utilizing exogenously activated promoters, which have been primarily induced using X-ray radiation. Here we further examine the potential of the pE9 promoter, comprising a combination of nine CArG radio-responsive elements, to drive the iNOS transgene. Effects of X-ray irradiation on promoter activity were compared in vitro under normoxic conditions and various degrees of hypoxia. The pE9 promoter generated high-level transgene expression, comparable with that achieved using the constitutively driven cytomegalovirus promoter. Furthermore, the radio-resistance of radiation-induced fibrosarcoma-1 (RIF-1) mouse sarcoma cells exposed to 0.1 and 0.01% O2 was effectively eliminated following transfection with the pE9/iNOS construct. Significant inhibition of tumour growth was also observed in vivo following direct intratumoural injection of the pE9/iNOS construct compared to empty vector alone (P<0.001) or to a single radiation dose of 10?Gy (P<0.01). The combination of both therapies resulted in a significant 4.25 day growth delay compared to the gene therapy treatment alone (P<0.001). In summary, we have demonstrated the potential of the pE9/iNOS construct for reducing radio-resistance conferred by tumour cell hypoxia in vitro and in vivo, with greater tumour growth delay observed following the treatment with the gene therapy construct as compared with radiotherapy alone.
Resumo:
Eppin has two potential protease inhibitory domains: a whey acid protein or four disulfide core domain and a Kunitz domain. The protein is also reported to have antibacterial activity against Gram-negative bacteria. Eppin and its whey acid protein and Kunitz domains were expressed in Escherichia coli and their ability to inhibit proteases and kill bacteria compared. The Kunitz domain inhibits elastase (EC 3.4.21.37) to a similar extent as intact eppin, whereas the whey acid protein domain has no such activity. None of these fragments inhibits trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1) at the concentrations tested. In a colony forming unit assay, both domains have some antibacterial activity against E. coli, but this was not to the same degree as intact eppin or the two domains together. When bacterial respiratory electron transport was measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, eppin and its domains caused an increase in the rate of respiration. This suggests that the mechanism of cell killing may be partly through the permeablization of the bacterial inner membrane, resulting in uncoupling of respiratory electron transport and consequent collapse of the proton motive force. Thus, we conclude that although both of eppin’s domains are involved in the protein’s antibacterial activity, only the Kunitz domain is required for selective protease inhibition.