60 resultados para planar Gunn diode
Resumo:
PURPOSE: To report a case of malignant glaucoma after diode laser cyclophotocoagulation. METHOD: Case report. RESULTS: A 45-year-old man with uncontrolled secondary glaucoma in his right eye after corneoscleral graft and cataract extraction underwent diode laser cyclophotocoagulation. The right eye was aphakic, with an intact posterior capsule. Two weeks later, the patient presented with blurred vision, edematous cornea, and flat anterior chamber. The posterior capsule was touching the endothelium. Intraocular pressure was 20 mm Hg. Repeated Nd:YAG laser capsulotomy was effective in reversing the malignant glaucoma attack, and the anterior chamber deepened. CONCLUSION: Malignant glaucoma can occur after diode laser cyclophotocoagulation.
Resumo:
Elucidation of the transcriptome and proteome of the normal retina will be difficult since it is comprised of at least 55 different cell types. However the characteristic layered cellular anatomy of the retina makes it amenable to planar sectioning, enabling the generation of enriched retinal cell populations. The aim of this study was to validate a reproducible method for preparing enriched retinal layers from porcine retina.
Resumo:
A novel multiplex microarray has been developed for the detection of five groups of harmful algal and cyanobacterial toxins found in marine, brackish, and freshwater environments including domoic acid (DA), okadaic acid (OA, and analogues), saxitoxin (STX, and analogues), cylindrospermopsin (CYN) and microcystins (MC, and analogues). The sensitivity and specificity were determined and feasibility to be used as a screening tool investigated. Results for algal/cyanobacterial cultures (n = 12) and seawater samples (n = 33) were compared to conventional analytical methods, such as high performance liquid chromatography (HPLC) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Detection limits for the 15 min assay were 0.37, 0.44, 0.05, 0.08, and 0.40 ng/mL for DA, OA, STX, CYN, and MC, respectively. The correlation of data obtained from the microarray compared to conventional analysis for the 12 cultures was r(2) = 0.83. Analysis of seawater samples showed that 82, 82, 70, 82, and 12% of samples were positive (>IC20) compared to 67, 55, 36, 0, and 0% for DA, OA, STX, CYN, and MC, respectively, for conventional analytical methods. The discrepancies in results can be attributed to the enhanced sensitivity and cross-reactivity profiles of the antibodies in the MBio microarray. The feasibility of the microarray as a rapid, easy to use, and highly sensitive screening tool has been illustrated for the five-plex detection of biotoxins. The research demonstrates an early warning screening assay to support national monitoring agencies by providing a faster and more accurate means of identifying and quantifying harmful toxins in water samples.
Resumo:
For over a decade, controlling domain wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like race-track memory and domain wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed “domain wall electronics”. Here we report the creation of a ferroelectric domain wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode’s saw-tooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the saw-tooth edge.
Resumo:
The fabrication and electrical characterization of Schottky junction diodes have been extensively researched for three-quarters of a century since the original work of Schottky in 1938. This study breaks from the highly standardized regime of such research and provides an alternative methodology that prompts novel, more efficient applications of the adroit Schottky junction in areas such as chemical and thermal sensing. The core departure from standard Schottky diode configuration is that the metal electrode is of comparable or higher resistance than the underlying semiconductor. Further, complete electrical characterization is accomplished through recording four-probe resistance-temperature (R-D-T) characteristics of the device, where electrical sourcing and sensing is done only via the metal electrode and not directly through the semiconductor. Importantly, this results in probing a nominally unbiased junction while eliminating the need for an Ohmic contact to the semiconductor. The characteristic R-D-T plot shows two distinct regions of high (metal) and low (semiconductor) resistances at low and high temperatures, respectively, connected by a crossover region of width, DT, within which there is a large negative temperature coefficient of resistance. The R-D-T characteristic is highly sensitive to the Schottky barrier height; consequently, at a fixed temperature, R-D responds appreciably to small changes in barrier height such as that induced by absorption of a chemical species (e.g., H-2) at the interface. A theoretical model is developed to simulate the R-D-T data and applied to Pd/p-Si and Pt/p-Si Schottky diodes with a range of metal electrode resistance. The analysis gives near-perfect fits to the experimental R-D-T characteristics, yielding the junction properties as fit parameters. The modelling not only helps elucidate the underlying physics but also helps to comprehend the parameter space essential for the discussed applications. Although the primary regime of application is limited to a relatively narrow range (DT) for a given type of diode, the alternative methodology is of universal applicability to all metal-semiconductor combinations forming Schottky contacts. (C) 2015 AIP Publishing LLC.
Resumo:
The electron dynamics in a planar coil inductively coupled plasma (ICP) system with a capacitively biased electrode is investigated using space and phase resolved optical emission spectroscopy. The two power source frequencies are exact multiple of each other and phase-locked. In this configuration, the system is investigated when the coil is operated in both E-mode and H-mode. The results show that in a phase synchronized RF biased ICP, the electrode bias power couples with the capacitive contribution of the coil, in both E-mode and H-modes, similar to dual-frequency capacitively coupled plasmas (2f-CCPs). It is also demonstrated that in H-mode, the phase between the electrode bias frequency and the ICP coil frequency influences the electron heating, similar to the electrical asymmetry effect in 2f-CCPs.
Resumo:
We evaluated the effectiveness of diode laser trans-scleral cyclophotocoagulation (TSCPC) on intraocular pressure (IOP) in nine patients having raised IOP following use of silicone oil (SO) for retinal detachment (RD) surgery in a retrospective observational case series. Diode laser TSCPC was applied at a power setting of 1.75 to 2.5 watts, for two sec with a maximum of 30 applications. The patients were followed up for 40 to 312 weeks. The mean pre-laser IOP was 32.06 mm Hg (SD 7.32). The mean post-laser IOP at one month, three months and six months was 17.89 mm Hg (SD 8.23), 21.89 mm Hg (SD 8.16) and 21.67 mm Hg (SD 7.55) respectively. The final IOP (at the last follow-up) was 19.56 mm Hg (SD 7.85) (P=0.021). Seven of them had undergone SO removal. In our observation, effectiveness of TSCPC in long-term control of SO-induced ocular hypertension was limited as compared to short-term control of IOP.