67 resultados para phase structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new ternary Ir-Mn-Si phase with stoichiometry Mn3IrSi has been synthesized and found to crystallize in the cubic AlAu4-type structure, space group P213 with Z=4, which is an ordered form of the beta-Mn structure. The unit cell dimension was determined by x-ray powder diffraction to a=6.4973(3) Angstrom. In addition to the crystal structure, we have determined the magnetic structure and properties using superconducting quantum interference device magnetometry and Rietveld refinements of neutron powder diffraction data. A complex noncollinear magnetic structure is found, with magnetic moments of 2.97(4)u(B) at 10 K only on the Mn atoms. The crystal structure consists of a triangular network built up by Mn atoms, on which the moments are rotated 120degrees around the triangle axes. The magnetic unit cell is the same as the crystallographic and carries no net magnetic moment. The Neel temperature was determined to be 210 K. A first-principles study, based on density functional theory in a general noncollinear formulation, reproduces the experimental results with good agreement. The observed magnetic structure is argued to be the result of frustration of antiferromagnetic couplings by the triangular geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ~120??K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase diagram of water at negative pressures as obtained from computer simulations for two models of water, TIP4P/2005 and TIP5P is presented. Several solid structures with lower densities than ice Ih, so-called virtual ices, were considered as possible candidates to occupy the negative pressure region of the phase diagram of water. In particular the empty hydrate structures sI, sII, and sH and another, recently proposed, low-density ice structure. The relative stabilities of these structures at 0 K was determined using empirical water potentials and density functional theory calculations. By performing free energy calculations and Gibbs-Duhem integration the phase diagram of TIP4P/2005 was determined at negative pressures. The empty hydrates sII and sH appear to be the stable solid phases of water at negative pressures. The phase boundary between ice Ih and sII clathrate occurs at moderate negative pressures, while at large negative pressures sH becomes the most stable phase. This behavior is in reasonable agreement with what is observed in density functional theory calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The model room temperature ionic liquid, 1,3-dimethylimidazolium chloride, has been studied by neutron diffraction for the first time. The diffraction data are used to derive a structural model of this liquid using Empirical Potential Structure Refinement. The model obtained indicates that significant charge ordering is present in the liquid salt and that the local order in this liquid closely resembles that found in the solid state. As in the crystal structure, hydrogen-bonding interactions between the ring hydrogens and the chloride dominate the structure. The model is compared with the data reported previously for both simple alkyl substituted imidazolium halides and binary mixtures with AlCl3. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a node with arbitrary connections or deletes an arbitrary node from the network. The network responds to each such change by quick “repairs,” which consist of adding or deleting a small number of edges. These repairs essentially preserve closeness of nodes after adversarial deletions, without increasing node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose distance would have been l in the graph formed by considering only the adversarial insertions (not the adversarial deletions), will be at distance at most l log n in the actual graph, where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degree would have been d in the graph with adversarial insertions only, will have degree at most 3d in the actual graph. Our distributed data structure, which we call the Forgiving Graph, has low latency and bandwidth requirements. The Forgiving Graph improves on the Forgiving Tree distributed data structure from Hayes et al. (2008) in the following ways: 1) it ensures low stretch over all pairs of nodes, while the Forgiving Tree only ensures low diameter increase; 2) it handles both node insertions and deletions, while the Forgiving Tree only handles deletions; 3) it requires only a very simple and minimal initialization phase, while the Forgiving Tree initially requires construction of a spanning tree of the network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactivity of the Ru(0 0 0 1) electrode towards the adsorption and electrooxidation of CO and methanol has been studied by variable-temperature in situ FTIR spectroscopy in both perchloric acid and sodium hydroxide solution, and the results interpreted in terms of the surface chemistry of the Ru(0 0 0 1) electrode. Both linear (CO) and threefold hollow (CO) binding CO adsorbates (bands at 1970-2040 and 1770-1820 cm, respectively) were observed on the Ru(0 0 0 1) electrode in both 0.1 M HClO and 0.1 M NaOH solutions from the CO adsorption. In the acid solution, CO was detected as the main adsorbed species on Ru(0 0 0 1) surface over all the potential region studied. In contrast, in the alkaline solution, more CO than CO was detected at lower potentials, whilst increasing the potential resulted in the transformation of CO to CO. At higher potentials, the oxidation of the adsorbed CO took place via reaction with the active (1 × 1)-O oxide/hydroxide. It was found that no dissociative adsorption or electrooxidation of methanol took place at the Ru(0 0 0 1) at potentials below 900 mV vs Ag/AgCl in perchloric acid solution at both 20 and 55°C. However, in the alkaline solution, methanol did undergo dissociative adsorption, to form linearly adsorbed CO (CO) with little or no CO adsorbed at threefold hollow sites (CO) at both 20 and 55°C. Increasing the temperature from 20 to 55°C clearly facilitated the methanol dissociative adsorption to CO and also enhanced the electrooxidation of the CO. At the higher potentials, significant oxidation of methanol to CO and methyl formate in acid solution and to bicarbonate and formate in alkaline solution, was observed, which was attributed to the formation of an active RuO phase on the Ru(0 0 0 1) surface, in agreement with our previous studies. © 2003 Elsevier Ltd. All right reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of a Pt(111) electrode after treatment in an electrolyte and subsequent transfer to an UHV chamber was investigated ex situ by combined low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopy (AES). Treatment of the sample in a CO saturated 0.1 M HClO solution at potentials between -0.2 and 0.2 V versus Ag/AgCl caused a maximum CO coverage of about 0.75 as probed by cyclic voltammetry, which dropped by partial desorption to about 0.25 upon transfer to the UHV chamber. This adlayer exhibited a (distorted) 3×3 R30° pattern by RHEED (but not with LEED) exhibiting an average domain size of 2.3 nm at room temperature. This is identified with the same phase reported before from gas phase studies, as also corroborated by the similarities of the vibrational spectroscopic data. The same structure (albeit even more poorly ordered) was found after dissociative adsorption of methanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The change in the Pt electronic structure following the adsorption of an a,ß-unsaturated aldehyde and ketone was followed by in situ HERFD-XANES in the liquid phase. The resulting shift in the Pt Fermi energy is in good agreement with the molecule adsorption energy trends calculated by DFT and provides insight into the reaction selectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:



We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that the following process continues for up to n rounds where n is the total number of nodes initially in the network: the adversary deletesan arbitrary node from the network, then the network responds by quickly adding a small number of new edges.

We present a distributed data structure that ensures two key properties. First, the diameter of the network is never more than O(log Delta) times its original diameter, where Delta is the maximum degree of the network initially. We note that for many peer-to-peer systems, Delta is polylogarithmic, so the diameter increase would be a O(loglog n) multiplicative factor. Second, the degree of any node never increases by more than 3 over its original degree. Our data structure is fully distributed, has O(1) latency per round and requires each node to send and receive O(1) messages per round. The data structure requires an initial setup phase that has latency equal to the diameter of the original network, and requires, with high probability, each node v to send O(log n) messages along every edge incident to v. Our approach is orthogonal and complementary to traditional topology-based approaches to defending against attack.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of self-healing in peer-to-peer networks that are under repeated attack by an omniscient adversary. We assume that, over a sequence of rounds, an adversary either inserts a node with arbitrary connections or deletes an arbitrary node from the network. The network responds to each such change by quick "repairs," which consist of adding or deleting a small number of edges. These repairs essentially preserve closeness of nodes after adversarial deletions,without increasing node degrees by too much, in the following sense. At any point in the algorithm, nodes v and w whose distance would have been - in the graph formed by considering only the adversarial insertions (not the adversarial deletions), will be at distance at most - log n in the actual graph, where n is the total number of vertices seen so far. Similarly, at any point, a node v whose degreewould have been d in the graph with adversarial insertions only, will have degree at most 3d in the actual graph. Our distributed data structure, which we call the Forgiving Graph, has low latency and bandwidth requirements. The Forgiving Graph improves on the Forgiving Tree distributed data structure from Hayes et al. (2008) in the following ways: 1) it ensures low stretch over all pairs of nodes, while the Forgiving Tree only ensures low diameter increase; 2) it handles both node insertions and deletions, while the Forgiving Tree only handles deletions; 3) it requires only a very simple and minimal initialization phase, while the Forgiving Tree initially requires construction of a spanning tree of the network. © Springer-Verlag 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an ab initio real-time-based computational approach to study nonlinear optical properties in condensed matter systems that is especially suitable for crystalline solids and periodic nanostructures. The equations of motion and the coupling of the electrons with the external electric field are derived from the Berry-phase formulation of the dynamical polarization [Souza et al., Phys. Rev. B 69, 085106 (2004)]. Many-body effects are introduced by adding single-particle operators to the independent-particle Hamiltonian. We add a Hartree operator to account for crystal local effects and a scissor operator to correct the independent particle band structure for quasiparticle effects. We also discuss the possibility of accurately treating excitonic effects by adding a screened Hartree-Fock self-energy operator. The approach is validated by calculating the second-harmonic generation of SiC and AlAs bulk semiconductors: an excellent agreement is obtained with existing ab initio calculations from response theory in frequency domain [Luppi et al., Phys. Rev. B 82, 235201 (2010)]. We finally show applications to the second-harmonic generation of CdTe and the third-harmonic generation of Si. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aiming at inexpensive Brønsted-acidic ionic liquids, suitable for industrial-scale catalysis, a family of protonic ionic liquids based on nitrogen bases and sulfuric acid has been developed. Variation of the molar ratio of sulfuric acid, χH2SO4, was used to tune acidity. The liquid structure was studied using 1H NMR and IR spectroscopies, revealing the existence of hydrogen-bonded clusters, [(HSO4)(H2SO4)]−, for χH2SO4 > 0.50. Acidity, quantified by Gutmann Acceptor Number (AN), was found to be closely related to the liquid structure. The ionic liquids were employed as acid catalysts in a model reaction; Fischer esterification of acetic acid with 1-butanol. The reaction rate depended on two factors; for χH2SO4 > 0.50, the key parameter was acidity (expressed as AN value), while for χH2SO4 > 0.50 it was the mass transport (solubility of starting materials in the ionic liquid phase). Building on this insight, the ionic liquid catalyst and reaction conditions have been chosen. Conversion values of over 95% were achieved under exceptionally mild conditions, and using an inexpensive ionic liquid, which could be recycled up to eight times without diminution in conversion or selectivity. It has been demonstrated how structural studies can underpin rational design and development of an ionic liquid catalyst, and in turn lead to a both greener and economically viable process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes an innovative monolith structure designed for applications in automotive catalysis using an advanced manufacturing approach developed at Imperial College London. The production process combines extrusion with phase inversion of a ceramic-polymer-solvent mixture in order to design highly ordered substrate micro-structures that offer improvements in performance, including reduced PGM loading, reduced catalyst ageing and reduced backpressure.

This study compares the performance of the novel substrate for CO oxidation against commercially available 400 cpsi and 900 cpsi catalysts using gas concentrations and a flow rate equivalent to those experienced by a full catalyst brick when attached to a vehicle. Due to the novel micro-structure, no washcoat was required for the initial testing and 13 g/ft3 of Pd was deposited directly throughout the substrate structure in the absence of a washcoat.

Initial results for CO oxidation indicate that the advanced micro-structure leads to enhanced conversion efficiency. Despite an 79% reduction in metal loading and the absence of a washcoat, the novel substrate sample performs well, with a light-off temperature (LOT) only 15 °C higher than the commercial 400 cpsi sample.

To test the effects of catalyst ageing on light-off temperature, each sample was aged statically at a temperature of 1000 °C, based on the Bench Ageing Time (BAT) equation. The novel substrate performed impressively when compared to the commercial samples, with a variation in light-off temperature of only 3% after 80 equivalent hours of ageing, compared to 12% and 25% for the 400 cpsi and 900 cpsi monoliths, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide insight into the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.