151 resultados para parallel scalability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the sustainability context, this paper is extremely timely and relevant. The research focuses on broadening the use of timber structurally. The insight gained forms the basis for sustainable, fire resistant, economic and aesthetically pleasing moment resistant connections in timber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high performance, low computational complexity detection algorithms is a key challenge for real-time Multiple-Input Multiple-Output (MIMO) communication system design. The Fixed-Complexity Sphere Decoder (FSD) algorithm is one of the most promising approaches, enabling quasi-ML decoding accuracy and high performance implementation due to its deterministic, highly parallel structure. However, it suffers from exponential growth in computational complexity as the number of MIMO transmit antennas increases, critically limiting its scalability to larger MIMO system topologies. In this paper, we present a solution to this problem by applying a novel cutting protocol to the decoding tree of a real-valued FSD algorithm. The new Real-valued Fixed-Complexity Sphere Decoder (RFSD) algorithm derived achieves similar quasi-ML decoding performance as FSD, but with an average 70% reduction in computational complexity, as we demonstrate from both theoretical and implementation perspectives for Quadrature Amplitude Modulation (QAM)-MIMO systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design, application, and evaluation of a user friendly, flexible, scalable and inexpensive Advanced Educational Parallel (AdEPar) digital signal processing (DSP) system based on TMS320C25 digital processors to implement DSP algorithms. This system will be used in the DSP laboratory by graduate students to work on advanced topics such as developing parallel DSP algorithms. The graduating senior students who have gained some experience in DSP can also use the system. The DSP laboratory has proved to be a useful tool in the hands of the instructor to teach the mathematically oriented topics of DSP that are often difficult for students to grasp. The DSP laboratory with assigned projects has greatly improved the ability of the students to understand such complex topics as the fast Fourier transform algorithm, linear and circular convolution, the theory and design of infinite impulse response (IIR) and finite impulse response (FIR) filters. The user friendly PC software support of the AdEPar system makes it easy to develop DSP programs for students. This paper gives the architecture of the AdEPar DSP system. The communication between processors and the PC-DSP processor communication are explained. The parallel debugger kernels and the restrictions of the system are described. The programming in the AdEPar is explained, and two benchmarks (parallel FFT and DES) are presented to show the system performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study has employed a combination of spectroscopic, calorimetric and computational methods to explore the binding of the three side-chained triazatruxene derivative, termed azatrux, to a human telomeric G-quadruplex sequence, under conditions of molecular crowding. The binding of azatrux to the tetramolecular parallel [d(TGGGGT)](4) quadruplex in the presence and absence of crowding conditions, was also characterized. The data indicate that azatrux binds in an end-stacking mode to the parallel G-quadruplex scaffold and highlights the key structural elements involved in the binding. The selectivity of azatrux for the human telomeric G-quadruplex relative to another biologically relevant G-quadruplex (c-Kit87up) and to duplex DNA was also investigated under molecular crowding conditions, showing that azatrux has good selectivity for the human telomeric G-quadruplex over the other investigated DNA structures. (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computing has recently reached an inflection point with the introduction of multicore processors. On-chip thread-level parallelism is doubling approximately every other year. Concurrency lends itself naturally to allowing a program to trade performance for power savings by regulating the number of active cores; however, in several domains, users are unwilling to sacrifice performance to save power. We present a prediction model for identifying energy-efficient operating points of concurrency in well-tuned multithreaded scientific applications and a runtime system that uses live program analysis to optimize applications dynamically. We describe a dynamic phase-aware performance prediction model that combines multivariate regression techniques with runtime analysis of data collected from hardware event counters to locate optimal operating points of concurrency. Using our model, we develop a prediction-driven phase-aware runtime optimization scheme that throttles concurrency so that power consumption can be reduced and performance can be set at the knee of the scalability curve of each program phase. The use of prediction reduces the overhead of searching the optimization space while achieving near-optimal performance and power savings. A thorough evaluation of our approach shows a reduction in power consumption of 10.8 percent, simultaneous with an improvement in performance of 17.9 percent, resulting in energy savings of 26.7 percent.