77 resultados para orthopaedic implants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pharmaceutical Journal, 6 September 2014, Vol 293, No 7826, online | URI:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operational lifetime of hip replacement prostheses can be severely limited due to the occurrence of excessive wear at the load-bearing interfaces. The aim of this study was to investigate how the surface topography of articulating counterfaces evolves over the duration of a laboratory wear run. It was observed that modular stainless steel femoral heads wearing against ultrahigh molecular weight polyethylene (UHMWPE) can themselves be subject to wearing. A comparison with retrieved in vivo-aged femoral heads shows many topographical similarities: in a qualitative sense, scratching and pitting are evident on laboratory and in vivo-worn femoral heads; quantitatively, roughness comparisons between the new and worn devices are seen to increase typically by a factor of 4 after laboratory wearing. The observations suggest that a particular wear mode, namely third-body wear, is responsible for the increased roughness. It is conjectured that third bodies might arise through surface fatigue wear on the metal counterface, Wear debris is also observed to have been generated from the polymer surface, creating rounded debris with sizes predominantly in the range 0.4-0.8 microns: dimensions that are comparable to values previously reported for in vivo generated debris.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioresorbable polymers such as PLA have an important role to play in the development of temporary implantable medical devices with significant benefits over traditional therapies. However, development of new devices is hindered by high manufacturing costs associated with difficulties in processing the material. A major problem is the lack of insight on material degradation during processing. In this work, a method of quantifying degradation of PLA using IR spectroscopy coupled with computational chemistry and chemometric modeling is examined. It is shown that the method can predict the quantity of degradation products in solid-state samples with reasonably good accuracy, indicating the potential to adapt the method to developing an on-line sensor for monitoring PLA degradation in real-time during processing.