47 resultados para neutrino mass and mixing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ejected mass distribution of Type Ia supernovae (SNe Ia) directly probes progenitor evolutionary history and explosion mechanisms, with implications for their use as cosmological probes. Although the Chandrasekhar mass is a natural mass scale for the explosion of white dwarfs as SNe Ia, models allowing SNe Ia to explode at other masses have attracted much recent attention. Using an empirical relation between the ejected mass and the light-curve width, we derive ejected masses Mej and 56Ni masses MNi for a sample of 337 SNe Ia with redshifts z <0.7 used in recent cosmological analyses. We use hierarchical Bayesian inference to reconstruct the joint Mej-MNi distribution, accounting for measurement errors. The inferred marginal distribution of Mej has a long tail towards sub-Chandrasekhar masses, but cuts off sharply above 1.4 M⊙. Our results imply that 25-50 per cent of normal SNe Ia are inconsistent with Chandrasekhar-mass explosions, with almost all of these being sub-Chandrasekhar mass; super-Chandrasekhar-mass explosions make up no more than 1 per cent of all spectroscopically normal SNe Ia. We interpret the SN Ia width-luminosity relation as an underlying relation between Mej and MNi, and show that the inferred relation is not naturally explained by the predictions of any single known explosion mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.