96 resultados para nanoparticles in soil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors responsible for paddy soil arsenic accumulation in the tubewell irrigated systems of the Bengal Delta were investigated. Baseline (i.e., nonirrigated) and paddy soils were collected from 30 field systems across Bangladesh. For each field, soil sampled at dry season (Boro) harvest i.e., the crop cycle irrigated with tubewell water, was collected along a 90 m transect away from the tubewell irrigation source. Baseline soil arsenic levels ranged from 0.8 to 21. mg/kg, with lower values found on the Pliestocene Terrace around Gazipur (average, 1.6 +/- 0.2 mg/kg), and higher levels found in Holecene sediment tracts of Jessore and Faridpur (average, 6.6 +/- 1.0 mg/kg). Two independent approaches were used to assess the extent of arsenic build-up in irrigated paddy soils. First, arsenic build-up in paddy soil at the end of dry season production (irrigated - baseline soil arsenic) was regressed against number of years irrigated and tubewell arsenic concentration. Years of irrigation was not significant (P 0.711), indicating no year-on-year arsenic build-up, whereas tubewell As concentration was significant (P = 0.008). The second approach was analysis of irrigated soils for 20 fields over 2 successive years. For nine of the fields there was a significant (P <0.05) decrease in soil arsenic from year 1 to 2, one field had a significant increase, whereas there was no change for the remaining 10. Over the dry season irrigation cycle, soil arsenic built-up in soils at a rate dependent on irrigation tubewell water, 35* (tubewell water concentration in mg/kg, mg/L). Grain arsenic rises steeply at low soil/shoot arsenic levels, plateauing out at concentratations. Baseline soil arsenic at Faridpur sites corresponded to grain arsenic levels at the start of this saturation phase. Therefore, variation in baseline levels of soil arsenic leads to a large range in grain arsenic. Where sites have high baseline soil arsenic, further additional arsenic from irrigation water only leads to a gradual increase in grain arsenic concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microcosm system was used to investigate and compare transfers of 14C labeled-1,2-dichlorobenzene (DCB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB) in an air-soil-plant system using single grass tillers planted into spiked soil. This study was the second phase of a development investigation for eventual study of a range of xenobiotic pollutants. Recoveries from the system were excellent at >90%. The predominant loss pathway for 14C labeled-1,2-DCB and 1,2,4-TCB was volatilisation with 85% and 76% volatilisation of parent compound and volatile metabolites over 5 weeks respectively. Most of the added label in the hexachlorobenzene spiked system remained in soil. Mineralisation was

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DGT (diffusive gradients in thin-films) has been proposed as a tool for predicting Cd concentrations in rice grain, but there is a lack of authenticating data. To further explore the relationship between DGT measured Cd and concentrations in rice cultivated in challenging, metal degraded, field locations with different heavy metal pollutant sources, 77 paired soil and grain samples were collected in Southern China from industrial zones, a "cancer village" impacted by mining waste and an organic farm. In situ deployments of DGT in flooded paddy rice rhizospheres were compared with a laboratory DGT assay on dried and rewetted soil. Total soil concentrations were a very poor predictor of plant uptake. Laboratory and field deployed DGT assays and porewater measurements were linearly related to grain concentrations in all but the most contaminated samples where plant toxicity occurred. The laboratory DGT assay was the best predictor of grain Cd concentrations, accommodating differences in soil Cd, pollutant source, and Cd:Zn ratios. Field DGT measurements showed that Zn availability in the flooded rice rhizospheres was greatly diminished compared to that of Cd, resulting in very high Cd:Zn ratios (0.1) compared to commonly observed values (0.005). These results demonstrate the potential of the DGT technique to predict Cd concentrations in field cultivated rice and demonstrate its robustness in a range of environments. Although, field deployments provided important details about in situ element stoichiometry, due to the inherent heterogeneity of the rice rhizosphere soils, deployment of DGT in dried and homogenized soils offers the best possibility of a soil screening tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This laboratory experiment systematically examines arsenic, iron, and phosphorus solubilities in soil suspensions as affected by addition of phosphorus fertilizer under different redox potential (Eh) and pH conditions. Under aerobic conditions, As solubility was low, however, under moderately reducing conditions (0, -150 mV), As solubility significantly increased due to dissolution of iron oxy-hydroxides. Upon reduction to -250 mV, As solubility was controlled by the formation of insoluble sulfides, and as a result soluble As contents significantly decreased. Soluble Fe concentration increased from moderate to highly anaerobic conditions; however, it decreased under aerobic conditions likely due to formation of insoluble oxy-hydroxides. A low pH, 5.5, led to increased soluble concentrations of As, Fe, and P. Finally, addition of P-fertilizers resulted in higher soluble P and As, even though the concentration of As did not increased after an addition rate of 600 mg P kg(-1) soil. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geogenic nickel (Ni), vanadium (V) and chromium (Cr) are present at elevated levels in soils in Northern Ireland. Whilst Ni, V and Cr total soil concentrations share common geological origins, their respective levels of oral bioaccessibility are influenced by different soil-geochemical factors. Oral bioaccessibility extractions were carried out on 145 soil samples overlying 9 different bedrock types to measure the bioaccessible portions of Ni, V and Cr. Principal component analysis identified two components (PC1 and PC2) accounting for 69% of variance across 13 variables from the Northern Ireland Tellus Survey geochemical data. PC1 was associated with underlying basalt bedrock, higher bioaccessible Cr concentrations and lower Ni bioaccessibility. PC2 was associated with regional variance in soil chemistry and hosted factors accounting for higher Ni and V bioaccessibility. Eight per cent of total V was solubilised by gastric extraction on average across the study area. High median proportions of bioaccessible Ni were observed in soils overlying sedimentary rock types. Whilst Cr bioaccessible fractions were low (max = 5.4%), the highest measured bioaccessible Cr concentration reached 10.0 mg kg-1, explained by factors linked to PC1 including high total Cr concentrations in soils overlying basalt bedrock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A microcosm system was developed to investigate transfers of organic xenobiotics in air-soil-plant systems. This was validated using 14C labelled 1,2-dichlorobenzene (DCB) as a model compound. Trapping efficiency was 106 ± 3% for volatile compounds and 93.0 ± 2.2% for carbon dioxide in a blank microcosm arrangement. Recovery of 1,2-dichlorobenzene spiked to grassed and unplanted soils was > 90% after 1 week. The predominant DCB loss process was volatilisation with no evidence for mineralisation over 1 week and 20-30% of the added spike remained in soil. Although there was no evidence for root uptake and translocation of added label, foliar uptake of soil volatilised compound was detected. The microcosm showed good potential for study of 14C labelled and unlabelled organic xenobiotic transfers in air-soil-plant systems with single plants and also intact planted cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were conducted to investigate the interactions between an earthworm species (Lumbricus terrestrius) and soil microflora with respect to the bioavailability and mineralisation of 14C ring-labelled atrazine. Presence of earthworms had no affect on atrazine in soil solution (assayed by soil centrifugation). This soil solution pool was highly time dependent, decreasing considerably as the experiment proceeded. KCl-extractable label was, however, affected by the presence of earthworms, with this pool initially increasing in the presence of the worms. This pool was also highly time-dependent although, the pattern of this dependence did not follow that for label in soil solution. Mineralisation of the atrazine closely followed the KCl exchangeable pool and not that of the soil solution pool. However, label sorbed to the surface of the worms was closely correlated to the soil solution pool. Mineralisation in the presence of earthworms was double that of the controls. By the end of the experiment 6% of added radioactivity was present in the earthworm biomass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidating the environmental drivers of selenium (Se) spatial distribution in soils at a continental scale is essential to better understand it's biogeochemical cycling to improve Se transfer into diets. Through modelling Se biogeochemistry in China we found that deposition and volatilization are key factors controlling distribution in surface soil, rather than bedrock-derived Se (<0.1 mg/kg). Wet deposition associated with the East Asian summer monsoon, and dry deposition associated with the East Asian winter monsoon, are responsible for dominant Se inputs into northwest and southeast China, respectively. In Central China the rate of soil Se volatilization is similar to that of Se deposition, suggesting that Se volatilization offsets it's deposition, resulting in negligible net Se input in soil. Selenium in surface soil at Central China is roughly equal to low petrogenic Se, which is the main reason for the presence of the Se poor belt. We suggest that both deposition and volatilization of Se could play a key role in Se balance in other terrestrial environments worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ionic liquids were used as solvents for dispersing luminescent lanthanide-doped LaF3:Ln(3+) nanocrystals (Ln(3+) = Eu3+ and Nd3+). To increase the solubility of the inorganic nanoparticles in the ionic liquids, the nanocrystals were prepared with different stabilizing ligands, i.e., citrate, N,N,N-trimethylglycine (betaine), and lauryldimethylglycine (lauryl betaine). LaF3:5%Ln(3+) :betaine could successfully be dispersed in 1-butyl-1-methylpyrrolidinium bis(tiifluoromethylsulfonyl)imide [C(4)mpyr][Tf2N], 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate [C(4)mpyr][TfO], and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)mim][Tf2N] but only in limited amounts. Red photoluminescence was observed for the europium(III)-containing nanoparticles and near-infrared luminescence for the neodymium(III)-containing systems.