49 resultados para n-multicyclic hyponormal operator
Resumo:
We express various sets of quantum correlations studied in the theoretical physics literature in terms of different tensor products of operator systems of discrete groups. We thus recover earlier results of Tsirelson and formulate a new approach for the study of quantum correlations. To do this we formulate a general framework for the study of operator systems arising from discrete groups. We study in detail the operator system of the free group Fn on n generators, as well as the operator systems of the free products of finitely many copies of the two-element group Z2. We examine various tensor products of group operator systems, including the minimal, the maximal, and the commuting tensor products. We introduce a new tensor product in the category of operator systems and formulate necessary and sufficient conditions for its equality to the commuting tensor product in the case of group operator systems.
Resumo:
We establish an unbounded version of Stinespring's Theorem and a lifting result for Stinespring representations of completely positive modular maps defined on the space of all compact operators. We apply these results to study positivity for Schur multipliers. We characterise positive local Schur multipliers, and provide a description of positive local Schur multipliers of Toeplitz type. We introduce local operator multipliers as a non-commutative analogue of local Schur multipliers, and characterise them extending both the characterisation of operator multipliers from [16] and that of local Schur multipliers from [27]. We provide a description of the positive local operator multipliers in terms of approximation by elements of canonical positive cones.
Resumo:
We define several new types of quantum chromatic numbers of a graph and characterize them in terms of operator system tensor products. We establish inequalities between these chromatic numbers and other parameters of graphs studied in the literature and exhibit a link between them and non-signalling correlation boxes.
Resumo:
We make a case for studying the impact of intra-node parallelism on the performance of data analytics. We identify four performance optimizations that are enabled by an increasing number of processing cores on a chip. We discuss the performance impact of these opimizations on two analytics operators and we identify how these optimizations affect each another.