48 resultados para molecular Coulombic over barrier model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silica additives in bone substitute materials are topical, clinically interesting and have significant support in the Orthopaedic field. Biosilica, e.g isolated from diatoms, has many advantages over its synthetic counterparts, e.g. it is amorphous, thus will be absorbed by the body, however, issues such as purity, presence of endotoxins and cytotoxicity need to be addressed before it can be further exploited. Biosilica isolated from Cyclotella Meneghiniana was then tested in a mouse model, to test the immunological response, organ toxicity (kidney, spleen, liver) and route of metabolism/excretion of silica. Five-week-old Balb-c mice were injected subcutaneously with a single high dose (50mg/ml) of Si-frustules, Si-frustules + organic linker and vehicle only control. Animals were sacrificed at 1d and 28d. The animal studies were conducted under an ethically approved protocol at Queen’s University, Belfast. The animals showed no adverse stress during the experiment and remained healthy until sacrifice. Blood results using ICP-OES analysis suggest the frustules were metabolized between comparator groups at different rates, and clearly showed elevated levels of silicon in groups injected with frustules relative to control. The histology of organs showed no variation in morphology of mice injected frustules relative compared to the control group.
Acknowledgements: The authors would like to thank Marie Curie International Outgoing Fellowships from the EU and Beaufort Marine Biodiscovery Award as part of the Marine Biotechnology Ireland Programme for providing financial support to this project.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metal exchanged CHA-type (SAPO-34 and SSZ-13) zeolites are promising catalysts for selective catalytic reduction (SCR) of NOx by NH3. However, the understanding of the process at the molecular level is still limited, which hinders the identification of its mechanism and the design of more efficient zeolite catalysts. In this work, modelling the reaction over Cu-SAPO-34, a periodic density functional theory (DFT) study of NH3-SCR was performed using hybrid functional with the consideration of van der Waals (vdW) interactions. A mechanism with a low N–N coupling barrier is proposed to account for the activation of NO. The redox cycle of Cu2+ and Cu+, which is crucial for the SCR process, is identified with detailed analyses. Besides, the decomposition of NH2NO is shown to readily occur on the Brønsted acid site by a hydrogen push-pull mechanism, confirming the collective efforts of Brønsted acid and Lewis acid (Cu2+) sites. The special electronic and structural properties of Cu-SAPO-34 are demonstrated to play an essential role the reaction, which may have a general implication on the understanding of zeolite catalysis.