54 resultados para modes
Resumo:
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Resumo:
Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magneto hydrodynamic (MHD)wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromosphericmagnetic structures, including spicules, fibrils and mottles. Next we goon to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux.This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magneto seismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmosphere.
Resumo:
Complexes of arsenic compounds and glutathione are believed to play an essential part in the metabolism and transport of inorganic arsenic and its methylated species. Up to now, the evidence of their presence is mostly indirect. We studied the stability and Chromatographic behaviour of glutathione complexes with trivalent arsenic: i.e. AsIII(GS)3, MA III(GS)2 and DMAIII(GS) under different conditions. Standard ion chromatography using PRP X-100 and carbonate or formic acid buffer disintegrated the complexes, while all three complexes are stable and separable by reversed phase chromatography (0.1% formic acid/acetonitrile gradient). AsIII(GS)3 and MAIII(GS)2 were more stable than DMAIII(GS), which even under optimal conditions tended to degrade on the column at 25 °C. Chromatography at 6 °C can retain the integrity of the samples. These results shed more light on the interpretation of a vast number of previously published arsenic speciation studies, which have used Chromatographic separation techniques with the assumption that the integrity of the arsenic species is guaranteed. © The Royal Society of Chemistry 2004.
Resumo:
This study is intended to investigate the validity of the stability diagram (SD) aided multivariate autoregressive (MAR) analysis for identifying modal parameters of a real truss bridge. The MAR models are adopted to fit the time series of the dynamic accelerations recorded from a number of observation points on the bridge; then the modal parameters are extracted from the MAR model coefficient matrix. The SD is adopted to determine statistically dominant modes. In plotting the SD, a number of stability criteria are further adopted for filtering out those modes with unstable modal parameters. By the present method, the first five modal frequencies and mode shapes are identified with very high precision, while the damping ratios are identified with high precision for the 1st mode but with poorer precision for higher modes. Moreover, the ability of the SD in selecting structural modes without getting involved in any model-order optimization problem is highlighted through a comparison study.
Resumo:
The influence of polarization on the plasmon modes excited in tip-enhanced near-field optical microscopy have been investigated using the Finite Difference Time Domain Method. Analysis of the calculated results have laid particular emphasis on the ability to align local field enhancements with the orientation of molecules in order to optimize Raman signals, with particular relevance to recent experimental work on carbon nanotubes.
Resumo:
Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must befounded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromosphericmagnetoseismology.
Resumo:
A means of encoding and decoding data using wireless orbital angular momentum (OAM) modes is proposed and analysed. Source data symbols are used to select an OAM mode, which is generated using an 8-element circular array. A 2-element array is used to detect the mode by estimating the phase gradient of the received signal, and hence identifying the transmitted data symbol. The results are presented in terms of mode estimation error.