77 resultados para interference fringes
Resumo:
Functional genomics have not been reported for Opisthorchis viverrini or the related fish-borne fluke, Clonorchis sinensis. Here we describe the introduction by square wave electroporation of Cy3-labeled small RNA into adult O. viverrini worms. Adult flukes were subjected to square wave electroporation employing a single pulse for 20 ms of 125V in the presence of 50 µg/ml of Cy3-siRNA. The parasites tolerated this manipulation and, at 24 and 48 h after electroporation, fluorescence from the Cy3-siRNA was evident throughout the parenchyma of the worms, with strong fluorescence evident in the guts and reproductive organs of the adult worms. Second, other worms were treated using the same electroporation settings with double stranded RNA targeting an endogenous papain-like cysteine protease, cathepsin B. This manipulation resulted in a significant reduction in specific mRNA levels encoding cathepsin B, and a significant reduction in cathepsin B activity against the diagnostic peptide, Z-Arg-Arg-AMC. This appears to be the first report of introduction of reporter genes into O. viverrini and the first report of experimental RNA interference (RNAi) in this fluke. The findings indicated the presence of an intact RNAi pathway in these parasites which, in turn, provides an opportunity to probe gene functions in this neglected tropical disease pathogen.
Resumo:
Mitochondrial transcription termination factor 1, MTERF1, has been reported to couple rRNA gene transcription initiation with termination and is therefore thought to be a key regulator of mammalian mitochondrial ribosome biogenesis. The prevailing model is based on a series of observations published over the last two decades, but no in vivo evidence exists to show that MTERF1 regulates transcription of the heavy-strand region of mtDNA containing the rRNA genes. Here, we demonstrate that knockout of Mterf1 in mice has no effect on mitochondrial rRNA levels or mitochondrial translation. Instead, loss of Mterf1 influences transcription initiation at the light-strand promoter, resulting in a decrease of de novo transcription manifested as reduced 7S RNA levels. Based on these observations, we suggest that MTERF1 does not regulate heavy-strand transcription, but rather acts to block transcription on the opposite strand of mtDNA to prevent transcription interference at the light-strand promoter.
Resumo:
The characterization and understanding of body to body communication channels is a pivotal step in the development of emerging wireless applications such as ad-hoc personnel localisation and context aware body area networks (CABAN). The latter is a recent innovation where the inherent mobility of body area networks can be used to improve the coexistence of multiple co-located BAN users. Rather than simply accepting reductions in communication performance, sensed changes in inter-network co-channel interference levels may facilitate intelligent inter-networking; for example merging or splitting with other BANs that remain in the same domain. This paper investigates the inter-body interference using controlled measurements of the full mesh interconnectivity between two ambulatory BANs operating in the same environment at 2.45 GHz. Each of the twelve network nodes reported received signal strength to allow for the creation of carrier to interference ratio time series with an overall entire mesh sampling period of 54 ms. The results indicate that even with two mobile networks, it is possible to identify the onset of co-channel interference as the BAN users move towards each other and, similarly, the transition to more favourable physical layer channel conditions as they move apart. © 2011 IEEE.
Resumo:
Many studies suggest a large capacity memory for briefly presented pictures of whole scenes. At the same time, visual working memory (WM) of scene elements is limited to only a few items. We examined the role of retroactive interference in limiting memory for visual details. Participants viewed a scene for 5?s and then, after a short delay containing either a blank screen or 10 distracter scenes, answered questions about the location, color, and identity of objects in the scene. We found that the influence of the distracters depended on whether they were from a similar semantic domain, such as "kitchen" or "airport." Increasing the number of similar scenes reduced, and eventually eliminated, memory for scene details. Although scene memory was firmly established over the initial study period, this memory was fragile and susceptible to interference. This may help to explain the discrepancy in the literature between studies showing limited visual WM and those showing a large capacity memory for scenes.
Resumo:
Body Area Networks are unique in that the large-scale mobility of users allows the network itself to travel across a diverse range of operating domains or even to enter new and unknown environments. This network mobility is unlike node mobility in that sensed changes in inter-network interference level may be used to identify opportunities for intelligent inter-networking, for example, by merging or splitting from other networks, thus providing an extra degree of freedom. This paper introduces the concept of context-aware bodynets for interactive environments using inter-network interference sensing. New ideas are explored at both the physical and link layers with an investigation based on a 'smart' office environment. A series of carefully controlled measurements of the mesh interconnectivity both within and between an ambulatory body area network and a stationary desk-based network were performed using 2.45 GHz nodes. Received signal strength and carrier to interference ratio time series for selected node to node links are presented. The results provide an insight into the potential interference between the mobile and static networks and highlight the possibility for automatic identification of network merging and splitting opportunities. © 2010 ACM.
Resumo:
Femtocells being small low powered base stations provide sufficient increase in system capacity along with better indoor coverage. However, the dense deployment of femtocells face the main challenge of co channel interference with macrocell users. In this paper, this interference problem is addressed by proposing a novel downlink power control algorithm for femtocells. The proposed algorithm gradually reduces the downlink transmit power of femtocells when they are informed about a nearby macrocell user under interference. This information is given to the femtocells by the macrocell base station through a unidirectional downlink broadcast channel. Simulation results show that the algorithm causes the macrocell to accommodate large number of femtocells within its area, whereas at the same time protecting the macrocell users from any harmful interference.
Resumo:
We examine the impact of primary and secondary interference on opportunistic relaying in cognitive spectrum sharing networks. In particular, new closed-form exact and asymptotic expressions for the outage probability of cognitive opportunistic relaying are derived over Rayleigh and Nakagami-m fading channels. Our analysis presents revealing insights into the diversity and array gains, diversity-multiplexing tradeoff, impact of primary transceivers' positions, and the optimal position of relays. We highlight that cognitive opportunistic relaying achieves the full diversity gain which is a product of the number of relays and the minimum Nakagami-m fading parameter in the secondary network. Furthermore, we confirm that the diversity gain reduces to zero when the peak interference constraint in the secondary network is proportional to the interference power from the primary network.