47 resultados para intercropping cultivation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The starfish, Asterias rubens, preys on mussels (Mytilus edulis), which are relaid during benthic cultivation processes. Starfish mops, a modified dredge used to remove starfish from mussel cultivation beds, are used in several fisheries today but few studies have attempted to quantify the effectiveness of this method in removing starfish. This study tested the effectiveness of starfish mopping to reduce starfish numbers on mussel beds in Belfast Lough, Northern Ireland. Video surveys to determine starfish densities on mussel beds were conducted between October 2013 and December 2014 using a GoPro™ camera attached to starfish mops. This allowed us to firstly test whether starfish density varied among mussel beds and to investigate how fluctuations in starfish numbers may vary in relationship to starfish ecology. We then estimated the efficiency of mops at removing starfish from mussel beds by comparing densities of starfish on beds, as determined using video footage, with densities removed by mops. Starfish abundance was similar among different mussel beds during this study. The efficiency of mops at removing estimated starfish aggregations varied among mussel beds (4–78%) and the mean reduction in starfish abundance was 27% (± SE 3.2). The effectiveness of mops at reducing starfish abundance was shown to decline as the initial density of starfish on mussel beds increased. It can be recommended that the exact deployment technique of mops on mussel beds should vary depending on the density of starfish locally. The area of mussel bed covered by mops during a tow, for example, should be less when starfish densities are high, to maintain efficiencies throughout the full length of tows and to optimise the removal of starfish from mussel beds. This strategy, by reducing abundance of a major predator, could assist in reducing losses in the mussel cultivation industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During benthic cultivation Mytilus edulis (blue mussels) are subject to predation pressure from a number of predators including Carcinus maenas (shore crabs). This predator can be responsible for substantial losses of mussels from the fishery and a full understanding of the predator–prey relationship between M. edulis and C. maenas is required to ensure attempts that reduce predatory pressure and subsequent commercial loss are successful. Whilst much work has examined the prey–predator size relationships between C. maenas and M. edulis, far less research has investigated how stress, such as periods of extended aerial exposure, may affect these relationships. We tested whether profit in terms of calories gained by crabs consuming mussels stressed by aerial exposure for 48 h differed from that of mussels at ambient conditions and whether being stressed affected the mussel's likelihood of predation. We also tested whether the size relationship between predators and their prey differed when mussels were stressed. We found that the profitability of prey (calories gained per second of handling time) did not vary between stressed and unstressed mussels. Handling times for stressed and unstressed mussels were similar, even when crabs were presented with mussels of the maximum size that they are able to consume. Small crabs were more likely to reject a mussel of preferred size if it was unstressed, suggesting that crabs may be able to assess that these mussels would require extra effort to break into and consume. Our findings suggest that the predator–prey relationship between mussels and crabs is not altered when mussels are stressed. C. maenas remains a voracious predator and regardless of the condition of mussels laid on commercial beds there is a need to control this predator in attempt to reduce losses in the benthic fishery.