136 resultados para inflammatory pseudotumor
Resumo:
Background: We investigated whether eosinophils and mast cells, found in the airways of children with wheeze, were activated during relatively asymptomatic periods.
Methods: A nonbronchoscopic bronchoalveolar lavage (BAL) procedure was performed on children presenting for an elective surgical procedure. Eosinophil-derived (eosinophil cationic protein, ECP) and mast cell-derived (histamine/tryptase) mediator concentrations were measured in the BAL fluid. A detailed history and serum immunoglobulin E were used to classify the children into four groups: atopic with and without asthma, viral-associated wheeze and normal controls.
Results: The ECP concentrations in BAL from atopic asthmatic subjects were significantly higher than those measured in BAL from normal controls (P < 0.01), no other groups differed significantly. Histamine concentrations were elevated in both the atopic asthmatic and viral-associated wheeze groups compared with controls (P < 0.02) and additionally higher concentrations were obtained in atopics with asthma compared with atopics without asthma (P < 0.03). Tryptase concentrations did not differ between groups, although the tryptase and histamine concentrations correlated significantly (r = 0.78, P < 0.0001).
Conclusions: Elevated histamine concentrations were found in children with wheeze regardless of the aetiology, whereas ECP was only elevated in those asthmatics with atopy. This suggests that even in relatively quiescent periods, there is some on going activation of airway eosinophils in children with atopic asthma.
Resumo:
The heterodimeric cytokine IL-23 plays a non-redundant function in the development of cell-mediated, organspecific autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE). To further characterize the mechanisms of action of IL-23 in autoimmune inflammation, we administered IL-23 systemically at different time points during both relapsing and chronic EAE. Surprisingly, we found suppression of disease in all treatment protocols. We observed a reduction in the number of activated macrophages and microglia in the CNS, while T cell infiltration was not significantly affected. Disease suppression correlated with reduced expansion of myelin-reactive T cells, loss of T-bet expression, loss of lymphoid structures, and increased production of IL-6 and IL-4. Here we describe an unexpected function of exogenous IL-23 in limiting the scope and extent of organ-specific autoimmunity.
Resumo:
To investigate the effect(s) of cataract surgery on the expression of pro-inflammatory genes and proteins in the retina using an experimental rodent model. An extracapsular lens extraction was performed in one eye of C57BL/6 mice (n=24); the contralateral unoperated eyes (n =24) as well as eyes from unoperated animals (n = 9) served as controls. The neurosensory retina and retinal pigment epithelium (RPE)/choroid were collected postoperatively. Expression of genes involved in the acute inflammatory/ injury response, including IL-1ß, fibroblast growth factor, transforming growth factor ß, chemokine CCL2, SDF-1, and complements C3, C4, and factor B (CFB), were examined by real-time PCR and, selectively, by immunohistochemistry. The expression of IL-1 ß and CCL2 genes was markedly upregulated (>0-fold, P >0.01) in the neurosensory retina 30 minutes postoperatively and maintained for the 2-week postoperative period of observation; IL-1 ß expression was also upregulated in RPE/choroid. The expression of complement C3 (>-fold) and CFB (>0-fold) genes in the neurosensory retina was also significantly upregulated (P
Resumo:
Until recently, the central nervous system (CNS) has been thought to be an immune privileged organ. However, it is now understood that neuroinflammation is linked with the development of several CNS diseases including late-onset Alzheimer's disease (LOAD). The development of inflammation is a complex process involving a wide array of molecular interactions which in the CNS remains to be further characterized. The development of neuroinflammation may represent an important link between the early stages of LOAD and its pathological outcome. It is proposed that risks for LOAD, which include genetic, biological and environmental factors can each contribute to impairment of normal CNS regulation and function. The links between risk factors and the development of neuroinflammation are numerous and involve many complex interactions which contribute to vascular compromise, oxidative stress and ultimately neuroinflammation. Once this cascade of events is initiated, the process of neuroinflammation can become overactivated resulting in further cellular damage and loss of neuronal function. Additionally, neuroinflammation has been associated with the formation of amyloid plaques and neurofibrillary tangles, the pathological hallmarks of LOAD. Increased levels of inflammatory markers have been correlated with an advanced cognitive impairment. Based on this knowledge, new therapies aimed at limiting onset of neuroinflammation could arrest or even reverse the development of the disease.
Resumo:
Aims Classical risk factors do not fully explain international differences in risk of coronary heart disease (CHD). We therefore measured thrombotic and inflammatory markers in a substudy of the WHO MONICA project and correlated these with CHD event rates.
Resumo:
Aims/hypothesis: Up-regulation of the receptor for AGEs (RAGE) and its ligands in diabetes has been observed in various tissues. Here, we sought to determine levels of RAGE and one of its most important ligands, S100B, in diabetic retina, and to investigate the regulatory role of S100B and RAGE in Müller glia.
Methods: Streptozotocin-diabetes was induced in Sprague-Dawley rats. RAGE, S100B and glial fibrillary acidic protein (GFAP) were detected in retinal cryosections. In parallel, the human retinal Müller cell line, MIO-M1, was maintained in normal glucose (5.5 mmol/l) or high glucose (25 mmol/l). RAGE knockdown was achieved using small interfering RNA (siRNA), while soluble RAGE was used as a competitive inhibitor of RAGE ligand binding. RAGE, S100B and cytokines were detected using quantitative RT-PCR, western blotting, cytokine protein arrays or ELISA. Activation of mitogen-activated protein kinase (MAPK) by RAGE was determined by western blotting.
Results: Compared with non-diabetic controls, RAGE and S100B were significantly elevated in the diabetic retina with apparent localisation in the Müller glia, occurring concomitantly with upregulation of GFAP. Exposure of MIO-M1 cells to high glucose induced increased production of RAGE and S100B. RAGE signalling via MAPK pathway was linked to cytokine production. Blockade of RAGE prevented cytokine responses induced by high glucose and S100B in Müller glia.
Conclusions/interpretation: Hyperglycaemia in vivo and in vitro exposure to high glucose induce upregulation of RAGE and its ligands, leading to RAGE signalling, which links to pro-inflammatory responses by retinal Müller glia. These data shed light on the potential clinical application of RAGE blockade to inhibit the progression of diabetic retinopathy.
Resumo:
Persistent activation of NF-B is central to the pathogenesis of many inflammatory lung disorders including Cystic Fibrosis, Asthma and Chronic Obstructive Pulmonary Disease. A20 is an endogenous negative regulator of NF-B signalling which has been widely described in autoimmune and inflammatory disorders including Diabetes and Crohn’s disease, but which has received little attention in terms of chronic lung disorders. This review examines the existing body of research on A20 regulation of NF-B signalling and details the mechanism and regulation of A20 action focusing, where possible, on pulmonary inflammation. A20 and its associated signalling molecules are highlighted as being of potential therapeutic interest for the treatment of inflammatory disorders and a proposed model of A20 activity in inflammatory lung disease is provided.