126 resultados para human aortic endothelial cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultured primary epithelial cells are used to examine inflammation in cystic fibrosis (CF). We describe a new human model system using cultured nasal brushings. Nasal brushings were obtained from 16 F508del homozygous patients and 11 healthy controls. Cells were resuspended in airway epithelial growth medium and seeded onto collagen-coated flasks and membranes for use in patch-clamp, ion transport, and mediator release assays. Viable cultures were obtained with a 75% success rate from subjects with CF and 100% from control subjects. Amiloride-sensitive epithelial Na channel current of similar size was present in both cell types while forskolin-activated CF transmembrane conductance regulator current was lacking in CF cells. In Ussing chambers, cells from CF patients responded to UTP but not to forskolin. Spontaneous and cytomix-stimulated IL-8 release was similar (stimulated 29,448 ± 9,025 pg/ml; control 16,336 ± 3,308 pg/ml CF; means ± SE). Thus nasal epithelial cells from patients with CF can be grown from nasal brushings and used in electrophysiological and mediator release studies in CF research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND - : Vascular endothelial cell growth factor plays a pivotal role in angiogenesis via regulating endothelial cell proliferation. The X-box binding protein 1 (XBP1) is believed to be a signal transducer in the endoplasmic reticulum stress response. It is unknown whether there is crosstalk between vascular endothelial cell growth factor signaling and XBP1 pathway. 

METHODS AND RESULTS - : We found that vascular endothelial cell growth factor induced the kinase insert domain receptor internalization and interaction through C-terminal domain with the unspliced XBP1 and the inositol requiring enzyme 1 α in the endoplasmic reticulum, leading to inositol requiring enzyme 1 α phosphorylation and XBP1 mRNA splicing, which was abolished by siRNA-mediated knockdown of kinase insert domain receptor. Spliced XBP1 regulated endothelial cell proliferation in a PI3K/Akt/GSK3β/β- catenin/E2F2-dependent manner and modulated the cell size increase in a PI3K/Akt/GSK3β/β-catenin/E2F2-independent manner. Knockdown of XBP1 or inositol requiring enzyme 1 α decreased endothelial cell proliferation via suppression of Akt/GSK3β phosphorylation, β-catenin nuclear translocation, and E2F2 expression. Endothelial cell-specific knockout of XBP1 (XBP1ecko) in mice retarded the retinal vasculogenesis in the first 2 postnatal weeks and impaired the angiogenesis triggered by ischemia. Reconstitution of XBP1 by Ad-XBP1s gene transfer significantly improved angiogenesis in ischemic tissue in XBP1ecko mice. Transplantation of bone marrow from wild-type o XBP1ecko mice could also slightly improve the foot blood reperfusion in ischemic XBP1ecko mice. 

CONCLUSIONS - : These results suggest that XBP1 can function via growth factor signaling pathways to regulate endothelial proliferation and angiogenesis. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES:

To describe a modified manual cataract extraction technique, sutureless large-incision manual cataract extraction (SLIMCE), and to report its clinical outcomes.

METHODS:

Case notes of 50 consecutive patients with cataract surgery performed using the SLIMCE technique were retrospectively reviewed. Clinical outcomes 3 months after surgery were analyzed, including postoperative uncorrected visual acuity, best-corrected visual acuity, intraoperative and postoperative complications, endothelial cell loss, and surgically induced astigmatism using the vector analysis method.

RESULTS:

At the 3-month follow-up, all 50 patients had postoperative best-corrected visual acuity of at least 20/60, and 37 patients (74%) had visual acuity of at least 20/30. Uncorrected visual acuity was at least 20/68 in 28 patients (56%) and was between 20/80 and 20/200 in 22 patients (44%). No significant intraoperative complications were encountered, and sutureless wounds were achieved in all but 2 patients. At the 3-month follow-up, endothelial cell loss was 3.9%, and the mean surgically induced astigmatism was 0.69 diopter.

CONCLUSIONS:

SLIMCE is a safe and effective manual cataract extraction technique with low rates of surgically induced astigmatism and endothelial cell loss. In view of its low cost, SLIMCE may have a potential role in reducing cataract blindness in developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Circulating Angiogenic Cells (CACs) promote revascularization of ischemic tissues although their underlying mechanism of action and the consequences of delivering varying numbers of these cells for therapy remain unknown. This study investigates molecular mechanisms underpinning CAC modulation of blood vessel formation.

METHODS & RESULTS: CACs at low (2x10(5)cells/ml) and mid (2x10(6)cells/ml) cellular densities significantly enhanced endothelial cell (EC) tube formation in vitro, while high density CACs (2x10(7)cells/ml) significantly inhibited this angiogenic process. In vivo, Matrigel-based angiogenesis assays confirmed mid-density CACs as pro-angiogenic and high density CACs as anti-angiogenic. Secretome characterization of CAC-EC conditioned media identified pentraxin 3 (PTX3) as only present in the high density CAC-EC co-culture. Recombinant PTX3 inhibited endothelial tube formation in vitro and in vivo Importantly, our data revealed that the anti-angiogenic effect observed in high density CAC-EC co-cultures was significantly abrogated when PTX3 bioactivity was blocked using neutralizing antibodies or PTX3 siRNA in endothelial cells. We show evidence for an endothelial source of PTX3, triggered by exposure to high density CACs. In addition, we confirmed that PTX3 inhibits FGF2-mediated angiogenesis, and that the PTX3 N-terminus, containing the FGF-binding site, is responsible for such anti-angiogenic effects.

CONCLUSIONS: Endothelium, when exposed to high density CACs, releases PTX3 which markedly impairs the vascular regenerative response in an autocrine manner. Therefore, CAC density and accompanying release of angiocrine PTX3 are critical considerations when using these cells as a cell therapy for ischemic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Antiangiogenic therapies can be an important adjunct to the management of many malignancies. Here we investigated a novel protein, FKBPL, and peptide derivative for their antiangiogenic activity and mechanism of action.

Experimental Design: Recombinant FKBPL (rFKBPL) and its peptide derivative were assessed in a range of human microvascular endothelial cell (HMEC-1) assays in vitro. Their ability to inhibit proliferation, migration, and Matrigel-dependent tubule formation was determined. They were further evaluated in an ex vivo rat model of neovascularization and in two in vivo mouse models of angiogenesis, that is, the sponge implantation and the intravital microscopy models. Antitumor efficacy was determined in two human tumor xenograft models grown in severe compromised immunodeficient (SCID) mice. Finally, the dependence of peptide on CD44 was determined using a CD44-targeted siRNA approach or in cell lines of differing CD44 status.

Results: rFKBPL inhibited endothelial cell migration, tubule formation, and microvessel formation in vitro and in vivo. The region responsible for FKBPL's antiangiogenic activity was identified, and a 24-amino acid peptide (AD-01) spanning this sequence was synthesized. It was potently antiangiogenic and inhibited growth in two human tumor xenograft models (DU145 and MDA-231) when administered systemically, either on its own or in combination with docetaxel. The antiangiogenic activity of FKBPL and AD-01 was dependent on the cell-surface receptor CD44, and signaling downstream of this receptor promoted an antimigratory phenotype.

Conclusion: FKBPL and its peptide derivative AD-01 have potent antiangiogenic activity. Thus, these agents offer the potential of an attractive new approach to antiangiogenic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Fetal ovarian development and primordial follicle formation underpin future female fertility. Prokineticin (PROK) ligands regulate cell survival, proliferation and angiogenesis in adult reproductive tissues including the ovary. However, their expression and function during fetal ovarian development remains unclear.

OBJECTIVE: To investigate expression and localization of the PROK ligands, receptors and their downstream transcriptional targets in the human fetal ovary.

SETTING: This study was conducted at the University of Edinburgh.

PARTICIPANTS: Ovaries were collected from 37 morphologically normal human fetuses.

DESIGN AND MAIN OUTCOME MEASURES: mRNA and protein expression of PROK ligands and receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting and immunohistochemistry. Functional studies were performed using a human germ tumour cell line (TCam-2) stably transfected with PROKR1.

RESULTS: Expression of PROK1 and PROKR1 was significantly higher in mid-gestation ovaries (17-20 weeks) than at earlier gestations (8-11 and 14-16 weeks). PROK2 significantly increased across the gestations examined. PROKR2 expression remained unchanged. PROK ligand and receptor proteins were predominantly localised to germ cells (including oocytes within primordial follicles) and endothelial cells, indicating these cell types to be the targets of PROK signalling in the human fetal ovary. PROK1 treatment of a germ cell line stably-expressing PROKR1 resulted in ERK phosphorylation, and elevated COX2 expression.

CONCLUSIONS: Developmental changes in expression and regulation of COX2 and pERK by PROK1 suggest that PROK ligands may be novel regulators of germ cell development in the human fetal ovary, interacting within a network of growth and survival factors prior to primordial follicle formation.