64 resultados para grassland ecosystem
Resumo:
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate- and non-climate-related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp-dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field-based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.
Resumo:
The consequences of biodiversity loss in the face of environmental change remain difficult to predict, given the complexity of interactions among species and the context-dependency of their functional roles within ecosystems. Predictions may be enhanced by studies testing how the interactive effects of species loss from different functional groups vary with important environmental drivers. On rocky shores, limpets and barnacles are recognised as key grazers and ecosystem engineers, respectively. Despite the large body of research examining the combined effects of limpet and barnacle removal, it is unclear how their relative importance varies according to wave exposure, which is a dominant force structuring intertidal communities. We tested the responses of algal communities to the removal of limpets and barnacles on three sheltered and three wave-exposed rocky shores on the north coast of Ireland. Limpet removal resulted in a relative increase in microalgal biomass on a single sheltered shore only, but led to the enhanced accumulation of ephemeral macroalgae on two sheltered shores and one exposed shore. On average, independently of wave exposure or shore, ephemeral macroalgae increased in response to limpet removal, but only when barnacles were removed. On two sheltered shores and one exposed shore, however, barnacles facilitated the establishment of fucoid macroalgae following limpet removal. Therefore, at the scale of this study, variability among individual shores was more important than wave exposure per se in determining the effect of limpet removal and its interaction with that of barnacles. Overall, these findings demonstrate that the interactive effects of losing key species from different functional groups may not vary predictably according to dominant environmental factors.
Resumo:
Biological invasions, nutrient enrichment and ocean warming are known to threaten biodiversity and ecosystem functioning. The independent effects of these ecological stressors are well studied, however, we lack understanding of their cumulative effects, which may be additive, antagonistic or synergistic. For example, the impacts of biological invasions are often determined by environmental context, which suggests that the effects of invasive species may vary with other stressors such as pollution or climate change. This study examined the effects of an invasive seaweed (Sargassum muticum) on the structure and functioning of a benthic marine assemblage and tested explicitly whether these effects varied with nutrient enrichment and ocean warming. Overall, the presence of Sargassum muticum increased assemblage productivity rates and warming altered algal assemblage structure, which was characterised by a decrease in kelp and an increase in ephemeral green algae. The effects of Sargassum muticum on total algal biomass accumulation, however, varied with nutrient enrichment and warming producing antagonistic cumulative effects on total algal biomass accumulation. These findings show that the nature of stressor interactions may vary with stressor intensity and among response variables, which leads to less predictable consequences for the structure and functioning of communities.
Resumo:
Studies of religious and other cultural groups tend to be particularistic or focus on one or more axes of variation. In this article we develop a more comprehensive approach to studying cultural diversity that emulates the study of biological diversity. We compare our cultural ecosystem approach with the axis approach, using the distinction between “tight” and “loose” cultures as an example. We show that while the axis approach is useful, the cultural ecosystem approach adds considerable value to the axis approach. We end by advocating the establishment of field sites for the study of religious and cultural diversity, comparable to biological field sites.
Resumo:
On formal credit markets, access to formal credit and reasonable credit terms of smallholder farmers
in rural sub-Saharan Africa is limited due to adverse selection. Financial institutions operating in
rural areas often cannot distinguish between borrowers (farmers) that are creditworthy and those that
are not, thus, allocate limited resource to agriculture to reduce credit risk. In the presence of limited business quality signaling by smallholder farmers, financial institutions shall demand for collateral and/or offer unfavorable contract terms. Moreover, agricultural productivity of rural sub-Saharan
Africa, dominated by subsistence or small-scale farmers, is also negatively impacted by the adverse
effect of climate change. A strategy that may make the farming practices of smallholder farmer’s
climate resilient and profitable may also improve smallholder farmer's access to formal credit. This
study investigates to what extent participating in ecosystem and extension services (EES) programs
signals business quality of smallholders, thus granting them credit accessibility. We collected data
on 210 smallholder farmers in 2013, comprising farmers that receive payments for ecosystem
services (PES) and farm management training from the International Small Group Tree Planting
Program (TIST) Kenya to test the aforementioned theory empirically. We use game theory,
particularly a screening and sorting model, to illustrate the prospects for farmers with EES to access
formal credit and to improve their credit terms given that they receive PES and banking services
training. Furthermore, the PES’ long term duration (10 – 30 years) generates stable cash-flow which
may be perceived as collateral substitute. Results suggest that smallholder farmers in the TIST
program were less likely to be credit constraint compared to non-TIST farmers. Distance to market,
education, livestock and farm income are factors that determine access to credit from microfinance
institutions in rural Kenya. Amongst farmers that have obtained loans, those keeping business records
enjoy more favorable formal credit conditions. These farmers were observed to pay ca. 5 percent less
interest rate in microfinance charges. For TIST farmers, this type of farm management practices may
be attributed to the banking services and other training they receive within the program. While the
availability of classical collateral (farmlands) and PES may reduce interest rate, the latter was found
to be statistically insignificant. This research underlines the importance of an effective extension
services in rural areas of developing countries and the need to improve gains from conservation
agriculture and ensuing PES. The benefits associated with EES and PES may encompass agricultural
financing.
Resumo:
Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15x15, 12x12 and 12x12 meters in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.
Resumo:
Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an `intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest. (c) 2006 Elsevier Ltd. All rights reserved.