50 resultados para gonad maturation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex can survive within macrophages by arresting the maturation of phagocytic vacuoles. The bacteria preclude fusion of the phagosome with lysosomes by a process that is poorly understood. Using murine macrophages, we investigated the stage at which maturation is arrested and analyzed the underlying mechanism. Vacuoles containing B. cenocepacia strain J2315, an isolate of the transmissible ET12 clone, recruited Rab5 and synthesized phosphatidylinositol-3-phosphate, indicating progression to the early phagosomal stage. Despite the fact that the B. cenocepacia-containing vacuoles rarely fused with lysosomes, they could nevertheless acquire the late phagosomal markers CD63 and Rab7. Fluorescence recovery after photobleaching and use of a probe that detects Rab7-guanosine triphosphate indicated that activation of Rab7 was impaired by B. cenocepacia, accounting at least in part for the inability of the vacuole to merge with lysosomes. The Rab7 defect was not due to excessive cholesterol accumulation and was confined to the infected vacuoles. Jointly, these experiments indicate that B. cenocepacia express virulence factors capable of interfering with Rab7 function and thereby with membrane traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic respiratory infections by the Burkholderia cepacia complex (Bcc) are of great concern to patients with cystic fibrosis. Bcc isolates may survive intracellularly within amoebae, respiratory epithelial cells and macrophages. The molecular mechanisms facilitating colonization and pathogenesis remain unclear. Given the importance of bacterial adhesion to host surfaces in microbial pathogenesis, we investigated the role of the O antigen LPS in the interaction of Burkholderia cenocepacia, a member of the Bcc, with macrophages and epithelial cells. Our results demonstrated that the O antigen modulates phagocytosis but does not affect intracellular survival of B. cenocepacia. Internalization of strains that lack O antigen was significantly increased compared to that of their isogenic smooth counterparts. However, no differences between rough and smooth strains were found in their ability to delay phagosomal maturation. We also found that the O antigen interfered with the ability of B. cenocepacia to adhere to bronchial epithelial cells, suggesting that this polysaccharide may mask one or more bacterial surface adhesins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Burkholderia cepacia complex (Bcc) is a group of opportunistic bacteria chronically infecting the airways of patients with cystic fibrosis (CF). Several laboratories have shown that Bcc members, in particular B. cenocepacia, survive within a membrane-bound vacuole inside phagocytic and epithelial cells. We have previously demonstrated that intracellular B. cenocepacia causes a delay in phagosomal maturation, as revealed by impaired acidification and slow accumulation of the late phagolysosomal marker LAMP-1. In this study, we demonstrate that uninfected cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages or normal macrophages treated with a CFTR-specific drug inhibitor display normal acidification. However, after ingestion of B. cenocepacia, acidification and phagolysosomal fusion of the bacteria-containing vacuoles occur in a lower percentage of CFTR-negative macrophages than CFTR-positive cells, suggesting that loss of CFTR function contributes to enhance bacterial intracellular survival. The CFTR-associated phagosomal maturation defect was absent in macrophages exposed to heat-inactivated B. cenocepacia and macrophages infected with a non-CF pathogen such as Salmonella enterica, an intracellular pathogen that once internalized rapidly traffics to acidic compartments that acquire lysosomal markers. These results suggest that not only a defective CFTR but also viable B. cenocepacia are required for the altered trafficking phenotype. We conclude that CFTR may play a role in the mechanism of clearance of the intracellular infection, as we have shown before that B. cenocepacia cells localized to the lysosome lose cell envelope integrity. Therefore, the prolonged maturation arrest of the vacuoles containing B. cenocepacia within cftr(-/-) macrophages could be a contributing factor in the persistence of the bacteria within CF patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: In ischemic retinopathies, the misdirection of reparative angiogenesis away from the hypoxic retina leads to pathologic neovascularization. Thus, therapeutic strategies that reverse this trend would be extremely beneficial. Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is an important mediator of vascular endothelial growth factor (VEGF) function facilitating vascular growth and maturation. However, in addition to NO, eNOS can also produce superoxide (O), exacerbating pathology. Here, our aim was to investigate the effect of eNOS overexpression on vascular closure and subsequent recovery of the ischemic retina.

Methods: Mice overexpressing eNOS-GFP were subjected to oxygen-induced retinopathy (OIR) and changes in retinal vascularization quantified. Background angiogenic drive was assessed during vascular development and in aortic rings. NOS activity was measured by Griess assay or conversion of radiolabeled arginine to citrulline, nitrotyrosine (NT), and superoxide by immunolabeling and dihydroethidium fluorescence and VEGF by ELISA.

Results: In response to hyperoxia, enhanced eNOS expression led to increased NOS-derived superoxide and dysfunctional NO production, NT accumulation, and exacerbated vessel closure associated with tetrahydrobiopterin (BH) insufficiency. Despite worse vaso-obliteration, eNOS overexpression resulted in elevated hypoxia-induced angiogenic drive, independent of VEGF production. This correlated with increased vascular branching similar to that observed in isolated aortas and during development. Enhanced recovery was also associated with neovascular tuft formation, which showed defective NO production and increased eNOS-derived superoxide and NT levels.

Conclusions: In hyperoxia, reduced BH bioavailability causes overexpressed eNOS to become dysfunctional, exacerbating vaso-obliteration. In the proliferative phase, however, eNOS has important prorepair functions enhancing angiogenic growth potential and recovery in ischemia. © 2012 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic fibrosis (CF) patients are at great risk of opportunistic lung infection, particularly by members of the Burkholderia cepacia complex (Bcc). This group of bacteria can cause damage to the lung tissue of infected patients and are very difficult to eradicate due to their high levels of antibiotic resistance. Though the highly virulent B. cenocepacia has been the focus of virulence research for the past decade, B. multivorans is emerging as the most prevalent Bcc species infecting CF patients in North America. Despite several studies detailing the intramacrophage trafficking and survival of B. cenocepacia, no such data exists for B. multivorans. Our results demonstrated that clinical CF isolates, C5568 and C0514, and an environmental B. multivorans isolate, ATCC17616, were able to replicate and survive within murine macrophages in a manner similar to B. cenocepacia K56-2. These strains were also able to survive but were unable to replicate within human THP-1 macrophages. Differences in macrophage uptake were observed among all three B. multivorans strains; these variances were attributed to major differences in O-antigen production. Unlike B. cenocepacia-containing vacuoles, which delay phagosomal maturation in murine macrophages by 6 h, all B. multivorans containing vacuoles co-localized with late endosome/lysosomal marker LAMP-1 and the lysosomal marker dextran within 2 h of uptake. Together, these results indicate that while both Bcc species are able to survive and replicate within macrophages, they utilize different intramacrophage survival strategies. To observe differences in virulence the strains were compared using the Galleria mellonella model. When compared to the B. multivorans strains tested, B. cenocepacia K56-2 is highly virulent in this model and killed all worms within 24 h when injected at 107 CFU. B. multivorans clinical isolates C5568 and C0514 were significantly more virulent than the soil isolate ATCC17616, which was avirulent, even when worms were injected with 107 CFU. These results suggest strain differences in the virulence of B. multivorans isolates.