49 resultados para global nonhydrostatic model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional understandings of what the Westminster model implies anticipate reliance on a top-down, hierarchical approach to budgetary accountability, reinforced by a post–New Public Management emphasis on recentralizing administrative capacity. This article, based on a comparative analysis of the experiences of Britain and Ireland, argues that the Westminster model of bureaucratic control and oversight itself has been evolving, hastened in large part due to the global financial crisis. Governments have gained stronger controls over the structures and practices of agencies, but agencies are also key players in securing better governance outcomes. The implication is that the crisis has not seen a return to the archetypal command-and-control model, nor a wholly new implementation of negotiated European-type practices, but rather a new accountability balance between elements of the Westminster system itself that have not previously been well understood.