149 resultados para gamma radiography
Resumo:
Multi-Mev proton beams generated by target normal sheath acceleration (TNSA) during the interaction of an ultra intense laser beam (Ia parts per thousand yen10(19) W/cm(2)) with a thin metallic foil (thickness of the order of a few tens of microns) are particularly suited as a particle probe for laser plasma experiments. The proton imaging technique employs a laser-driven proton beam in a point-projection imaging scheme as a diagnostic tool for the detection of electric fields in such experiments. The proton probing technique has been applied in experiments of relevance to inertial confinement fusion (ICF) such as laser heated gasbags and laser-hohlraum experiments. The data provides direct information on the onset of laser beam filamentation and on the plasma expansion in the hohlraum's interior, and confirms the suitability and usefulness of this technique as an ICF diagnostic.
Resumo:
During the course of our research efforts to develop a potent and selective gamma-secretase inhibitor for the treatment of Alzheimer's disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-beta precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of gamma-secretase (A beta 40 IC50 = 0.30 nM), demonstrating a 193-fold selectivity against Notch. Oral administration of 4 significantly reduced A beta 40 levels for sustained periods in brain, plasma, and cerebrospinal fluid in rats and dogs.
Resumo:
A radioiodinated ligand, [125I]SB-236636 [(S)-(-)3-[4-[2-[N-(2-benzoxazolyl)-N-methylamino]ethoxy]3-[125I]iodophenyl]2-ethoxy propanoic acid], which is specific for the ? isoform of the peroxisomal proliferator activated receptor (PPAR?), was developed. [125I]SB-236636 binds with high affinity to full-length human recombinant PPAR?1 and to a GST (glutathione S-transferase) fusion protein contg. the ligand binding domain of human PPAR?1 (KD = 70 nM). Using this ligand, the authors characterized binding sites in adipose-derived cells from rat, mouse and humans. In competition expts., rosiglitazone (BRL-49653), a potent antihyperglycemic agent, binds with high affinity to sites in intact adipocytes (IC50 = 12, 4 and 9 nM for rat, 3T3-L1 and human adipocytes, resp.). Binding affinities (IC50) of other thiazolidinediones for the ligand binding domain of PPAR?1 were comparable with those detd. in adipocytes and reflected the rank order of potencies of these agents as stimulants of glucose transport in 3T3-L1 adipocytes and antihyperglycemic agents in vivo: rosiglitazone > pioglitazone > troglitazone. Competition of [125I]SB-236636 binding was stereoselective in that the IC50 value of SB-219994, the (S)-enantiomer of an ?-trifluoroethoxy propanoic acid insulin sensitizer, was 770-fold lower than that of SB-219993 [(R)-enantiomer] at recombinant human PPAR?1. The higher binding affinity of SB-219994 also was evident in intact adipocytes and reflected its 100-fold greater potency as an antidiabetic agent. The results strongly suggest that the high-affinity binding site for [125I]SB-236636 in intact adipocytes is PPAR? and that the pharmacol. of insulin-sensitizer binding in rodent and human adipocytes is very similar and, moreover, predictive of antihyperglycemic activity in vivo.
Resumo:
Th/U and Th/K data from spectral gamma-ray logs obtained from outcrop successions have been used as a rapid and inexpensive proxy for determining possible episodes of humid-arid palaeoclimate change. Such outcrop-based measurements have never been tested using spectral gamma-ray data obtained from wireline logs in subsurface boreholes. Th/K and Th/U ratios have traditionally been used to decipher sequence stratigraphic patterns, at outcrop and in borehole. The possible influence of palaeoclimate on such ratio changes has yet to be proven, especially from borehole data. In this work, we compare borehole-derived Th/K (and to a lesser extent Th/U) to palaeoenvironmental changes inferred from palynology and deduce that both sea level and changing hinterland weathering regimes caused discrete fluctuations observed in the spectral gamma-ray logs. This is the first time such subsurface information has been used in this way. Interpretation of wireline logs in terms of palaeoclimate as well as sea level may now be considered, and the use of such logs in palaeoclimate reconstruction is strengthened.
Resumo:
The liquid structures of thin films of aqueous solutions of 0, 7, 19, 50, and 100 mol % isopropanol above O/Al-terminated gamma-alumina surfaces have been investigated by means of classical molecular dynamics simulations. The structuring effect of the oxide oil the liquid mixtures is strong and heavily dependent on the local structure of the oxide. Two distinct re-ions are found oil the oxide Surface characterized by the degree of coordination of Al atoms. Above octahedral Al atoms, water and isopropanol molecules adsorb via the oxygen atoms to maximize the electrostatic interaction, whereas above tetrahedral Al sites the solvent molecules adsorb via hydrogen atoms with the oxygen atoms away front the surface. More mobility is found in the second layer compared with the first; however, its structure is still influenced significantly by the orientation of molecules in the first adsorbed layer. Qualitatively, the displacement of water from the surface by the adsorption of isopropanol occurs with 2.6 Water molecules lost for every alcohol molecule present based on the effective surface areas of the two species calculated from the pure simulations.
Resumo:
Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, Delta epsilon, of the gamma-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.