96 resultados para fractured bedrock aquifers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African coastal regions are expected to experience the highest rates of population growth in coming decades. Fresh groundwater resources in the coastal zone of East Africa (EA) are highly vulnerable to seawater intrusion. Increasing water demand is leading to unsustainable and ill-planned well drilling and abstraction. Wells supplying domestic, industrial and agricultural needs are or have become, in many areas, too saline for use. Climate change, including weather changes and sea level rise, is expected to exacerbate this problem. The multiplicity of physical, demographic and socio-economic driving factors makes this a very challenging issue for management. At present the state and probable evolution of coastal aquifers in EA are not well documented. The UPGro project 'Towards groundwater security in coastal East Africa' brings together teams from Kenya, Tanzania, Comoros Islands and Europe to address this knowledge gap. An integrative multidisciplinary approach, combining the expertise of hydrogeologists, hydrologists and social scientists, is investigating selected sites along the coastal zone in each country. Hydrogeologic observatories have been established in different geologic and climatic settings representative of the coastal EA region, where focussed research will identify the current status of groundwater and identify future threats based on projected demographic and climate change scenarios. Researchers are also engaging with end users as well as local community and stakeholder groups in each area in order to understanding the issues most affecting the communities and searching sustainable strategies for addressing these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In highly heterogeneous aquifer systems, conceptualization of regional groundwater flow models frequently results in the generalization or negligence of aquifer heterogeneities, both of which may result in erroneous model outputs. The calculation of equivalence related to hydrogeological parameters and applied to upscaling provides a means of accounting for measurement scale information but at regional scale. In this study, the Permo-Triassic Lagan Valley strategic aquifer in Northern Ireland is observed to be heterogeneous, if not discontinuous, due to subvertical trending low-permeability Tertiary dolerite dykes. Interpretation of ground and aerial magnetic surveys produces a deterministic solution to dyke locations. By measuring relative permeabilities of both the dykes and the sedimentary host rock, equivalent directional permeabilities, that determine anisotropy calculated as a function of dyke density, are obtained. This provides parameters for larger scale equivalent blocks, which can be directly imported to numerical groundwater flow models. Different conceptual models with different degrees of upscaling are numerically tested and results compared to regional flow observations. Simulation results show that the upscaled permeabilities from geophysical data allow one to properly account for the observed spatial variations of groundwater flow, without requiring artificial distribution of aquifer properties. It is also found that an intermediate degree of upscaling, between accounting for mapped field-scale dykes and accounting for one regional anisotropy value (maximum upscaling) provides results the closest to the observations at the regional scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effects of ground heterogeneity, considering permeability as a random variable, on an intruding SW wedge using Monte Carlo simulations. Random permeability fields were generated, using the method of Local Average Subdivision (LAS), based on a lognormal probability density function. The LAS method allows the creation of spatially correlated random fields, generated using coefficients of variation (COV) and horizontal and vertical scales of fluctuation (SOF). The numerical modelling code SUTRA was employed to solve the coupled flow and transport problem. The well-defined 2D dispersive Henry problem was used as the test case for the method. The intruding SW wedge is defined by two key parameters, the toe penetration length (TL) and the width of mixing zone (WMZ). These parameters were compared to the results of a homogeneous case simulated using effective permeability values. The simulation results revealed: (1) an increase in COV resulted in a seaward movement of TL; (2) the WMZ extended with increasing COV; (3) a general increase in horizontal and vertical SOF produced a seaward movement of TL, with the WMZ increasing slightly; (4) as the anisotropic ratio increased the TL intruded further inland and the WMZ reduced in size. The results show that for large values of COV, effective permeability parameters are inadequate at reproducing the effects of heterogeneity on SW intrusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel methodology has been developed to quantify important saltwater intrusion parameters in a sandbox style experiment using image analysis. Existing methods found in the literature are based mainly on visual observations, which are subjective, labour intensive and limits the temporal and spatial resolutions that can be analysed. A robust error analysis was undertaken to determine the optimum methodology to convert image light intensity to concentration. Results showed that defining a relationship on a pixel-wise basis provided the most accurate image to concentration conversion and allowed quantification of the width of mixing zone between the saltwater and freshwater. A large image sample rate was used to investigate the transient dynamics of saltwater intrusion, which rendered analysis by visual observation unsuitable. This paper presents the methodologies developed to minimise human input and promote autonomy, provide high resolution image to concentration conversion and allow the quantification of intrusion parameters under transient conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

viii
Executive Summary
The Pathways Project field studies were targeted at improving the understanding of contaminant transport along different hydrological pathways in Irish catchments, including their associated impacts on water quality and river ecology. The contaminants of interest were phosphorus, nitrogen and sediment. The working Pathways conceptual model included overland flow, interflow, shallow groundwater flow, and deep groundwater flow. This research informed the development of a set of Catchment Management Support Tools (CMSTs) comprising an Exploratory Tool, Catchment Characterization Tool (CCT) and Catchment Modelling Tool (CMT) as outlined in Pathways Project Final Reports Volumes 3 and 4.
In order to inform the CMST, four suitable study catchments were selected following an extensive selection process, namely the Mattock catchment, Co. Louth/Meath; Gortinlieve catchment, Co. Donegal; Nuenna catchment, Co. Kilkenny and the Glen Burn catchment, Co. Down. The Nuenna catchment is well drained as it is underlain by a regionally important karstified limestone aquifer with permeable limestone tills and gravels, while the other three catchments are underlain by poorly productive aquifers and low permeability clayey tills, and are poorly drained.
All catchments were instrumented, and groundwater, surface and near-surface water and aquatic ecology were monitored for a period of two years. Intensive water quality sampling during rainfall events was used to investigate the pathways delivering nutrients. The proportion of flow along each pathway was determined using chemical and physical hydrograph separation techniques, supported by numerical modelling.
The outcome of the field studies broadly supported the use of the initial four-pathway conceptual model used in the Pathways CMT (time-variant model). The artificial drainage network was found to be a significant contributing pathway in the poorly drained catchments, at low flows and during peak flows in wet antecedent conditions. The transition zone (TZ), i.e. the broken up weathered zone at the top of the bedrock, was also found to be an important pathway. It was observed to operate in two contrasting hydrogeological scenarios: in groundwater discharge zones the TZ can be regarded as being part of the shallow groundwater pathway, whereas in groundwater recharge zones it behaves more like interflow.
In the catchments overlying poorly productive aquifers, only a few fractures or fracture zones were found to be hydraulically active and the TZ, where present, was the main groundwater pathway. In the karstified Nuenna catchment, the springs, which are linked to conduits as well as to a diffuse fracture network, delivered the majority of the flow. These findings confirm the two-component groundwater contribution from bedrock but suggest that the size and nature of the hydraulically active fractures and the nature of the TZ are the dominant factors at the scale of a stream flow event.
Diffuse sources of nitrate were found to be typically delivered via the subsurface pathways, especially in the TZ and land drains in the poorly productive aquifer catchments, and via the bedrock groundwater in the Nuenna. Phosphorus was primarily transported via overland flow in both particulate and soluble forms. Where preferential flow paths existed in the soil and subsoil, soluble P, and to a lesser extent particulate P, were also transported via the TZ and in drains and ditches. Arable land was found to be the most important land use for
ix
the delivery of sediment, although channel bank and in-stream sources were the most significant in the Glen Burn catchment. Overland flow was found to be the predominant transport sediment pathway in the poorly productive catchments. These findings informed the development of the transport and attenuation equations used in the CCT and CMT. From an assessment of the relationship between physico-chemical and biological conditions, it is suggested that in the Nuenna, Glen Burn and Gortinlieve catchments, a relationship may exist between biological water quality and nitrogen concentrations, as well as with P. In the Nuenna, there was also a relationship between macroinvertebrate status and alkalinity.
Further research is recommended on the transport and delivery of phosphorus in groundwater, the transport and attenuation dynamics in the TZ in different hydrogeological settings and the relationship between macroinvertebrates and co-limiting factors. High resolution temporal and spatial sampling was found to be important for constraining the conceptual understanding of nutrient and sediment dynamics which should also be considered in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the applications of a novel methodology to quantify saltwater intrusion parameters in laboratory-scale experiments. The methodology uses an automated image analysis procedure, minimizing manual inputs and the subsequent systematic errors that can be introduced. This allowed the quantification of the width of the mixing zone which is difficult to measure in experimental methods that are based on visual observations. Glass beads of different grain sizes were tested for both steady-state and transient conditions. The transient results showed good correlation between experimental and numerical intrusion rates. The experimental intrusion rates revealed that the saltwater wedge reached a steady state condition sooner while receding than advancing. The hydrodynamics of the experimental mixing zone exhibited similar
traits; a greater increase in the width of the mixing zone was observed in the receding saltwater wedge, which indicates faster fluid velocities and higher dispersion. The angle of intrusion analysis revealed the formation of a volume of diluted saltwater at the toe position when the saltwater wedge is prompted to recede. In addition, results of different physical repeats of the experiment produced an average coefficient of variation less than 0.18 of the measured toe length and width of the mixing zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients often spend time as inpatients in hospitals outside their home area because of the need to access specialist services. If there is a need for ongoing care after the need for specialist care has passed, patients are transferred (or ‘repatriated’) back to the inpatient care of a hospital in their local Health and Social Care Trust. The need for bed space in specialist units means that there is pressure for this transition to occur in a timely way. We investigated the flow of patients through a trauma and orthopaedics unit using the 6M Design® framework and Vitals Charts® in order to investigate concerns about delayed repatriation. We found that repatriation was part of a complex system that had interdependent components. There was considerable variation in the number of discharges (to any destination) by day of week, with a reduction on Saturdays and Sundays. Understanding that the pressure for quicker repatriation was really due to high work-in-progress led us to model the effects of strategies to address the high work-in-progress. We found that, because only a small proportion of patients require repatriation, expediting the repatriation process by one day for each patient would only reduce WIP by an average of 1.6 patients. Reducing the average length of stay for all trauma and orthopaedics inpatients by one day would reduce the WIP by 10 patients, which would make a much greater impact on the problem of high bed occupancy. Though the smooth and timely repatriation of patients to rehabilitation units is desirable, it is unlikely that efforts to achieve this will have a substantial impact on the problem of high WIP, so other strategies will be required. We will model the effects of strategies to reduce variation in daily discharges by the day of week in a future essay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how microorganisms influence the physical and chemical properties of the subsurface is hindered by our inability to observe microbial dynamics in real time and with high spatial resolution. Here, we investigate the use of noninvasive geophysical methods to monitor biomineralization at the laboratory scale during stimulated sulfate reduction under dynamic flow conditions. Alterations in sediment characteristics resulting from microbe-mediated sulfide mineral precipitation were concomitant with changes in complex resistivity and acoustic wave propagation signatures. The sequestration of zinc and iron in insoluble sulfides led to alterations in the ability of the pore fluid to conduct electrical charge and of the saturated sediments to dissipate acoustic energy. These changes resulted directly from the nucleation, growth, and development of nanoparticulate precipitates along grain surfaces and within the pore space. Scanning and transmission electron microscopy (SEM and TEM) confirmed the sulfides to be associated with cell surfaces, with precipitates ranging from aggregates of individual 3-5 nm nanocrystals to larger assemblages of up to 10-20 m in diameter. Anomalies in the geophysical data reflected the distribution of mineral precipitates and biomass over space and time, with temporal variations in the signals corresponding to changes in the aggregation state of the nanocrystalline sulfides. These results suggest the potential for using geophysical techniques to image certain subsurface biogeochemical processes, such as those accompanying the bioremediation of metal-contaminated aquifers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis (OP) is one of the most prevalent bone diseases worldwide with bone fracture the major clinical consequence. The effect of OP on fracture repair is disputed and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer to this question still eludes us. The aim of this study was to clarify the effect of osteoporosis in a rodent fracture model. OP was induced in 3-month-old rats (n = 53) by ovariectomy (OVX) followed by an externally fixated, mid-diaphyseal femoral osteotomy at 6 months (OVX group). A further 40 animals underwent a fracture at 6 months (control group). Animals were sacrificed at 1, 2, 4, 6, and 8 weeks postfracture with outcome measures of histology, biomechanical strength testing, pQCT, relative BMD, and motion detection. OVX animals had significantly lower BMD, slower fracture repair (histologically), reduced stiffness in the fractured femora (8 weeks) and strength in the contralateral femora (6 and 8 weeks), increased body weight, and decreased motion. This study has demonstrated that OVX is associated with decrease in BMD (particularly in trabecular bone) and a reduction in the mechanical properties of intact bone and healing fractures. The histological, biomechanical, and radiological measures of union suggest that OVX delayed fracture healing. (C) 2007 Orthopaedic Research Society. Published by Wiley Periodicals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron and Mn redistribute in soil and saprolite during weathering. The geological weathering fronts ofcalcareous sedimentary rock were investigated by examining the bulk density, porosity, and distribution ofCa, Fe, and Mn. Core samples were taken ofsoil, saprolite, and bedrock material from both summit (HHMS-4B) and sideslope (HHMS-5A) positions on an interbedded Nolichucky shale and Maryville limestone landform in Solid Waste Storage Area 6 (SWSA-6). This is a low-level radioactive solids waste disposal site on the Dept. ofEnergy (DOE) Oak Ridge Reservation in Roane County Tennessee. This work was initiated because data about the properties of highly weathered sedimentary rock on this site were limited. The core samples were analyzed for pH, calcium carbonate equivalence (CCE), hydroxylamine-extractable (HA) Mn, and dithionite-citrate (CBD)-extractable Fe and Mn. Low pH values occurred from the soil surface down to the depth of the oxidized and leached saprolite in both cores. The CCE and HA-extractable Mn results were also influenced by the weathering that has occurred in these zones. Extractable Mn oxide was higher at a lower depth in the oxidized and leached saprolite compared with the Fe oxide, which was higher in the overlying soil solum. Amounts of Mn oxides were higher in the sideslope core (HHMS-5A) than in the summit core (HHMS-4B). Iron was more abundant in the deeper weathered summit core, but the highest value, 39.4 g kg-1, was found at 1.8 to 2.4 m in the sideslope core. The zone encompassing the oxidized and partially leached saprolite down to the unoxidized and unleached bedrock had higher densities and larger quantities of CaCO3 than the soil solum and oxidized and leached saprolite. The overlying soil and oxidized and leached saprolite had lower pH and CCE values and were higher in Fe and Mn oxides than the oxidized and unleached saprolite. The distribution of Fe and Mn is important when evaluating soil and saprolite for hazardous waste disposal site assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the aftermath of recent natural disasters, NGOs have become increasingly involved in the permanent reconstruction of affected communities. These organizations, often operating well outside their expertise, encounter significant barriers as they implement reconstruction programmes. This paper presents the theoretical bedrock of a current research project, the overall goal of which is to design a competency-based framework model that can be used by NGOs in post-disaster reconstruction projects. Drawing on established theories of management, a unique perspective has been developed from which a competency-based reconstruction theory emerges. This theoretical framework brings together three distinct fields; Disaster Management, Strategic Management and Project Management, each vital to the success of the model. This theoretical study will incorporate a critical review of literature within each field. It is imperative that NGOs involved in post-disaster reconstruction familiarize themselves with concepts and strategies. It is hoped that the competence-based frame-work model that is produced on the basis of this theory will help define the standard of best practice to which future NGO projects might align themselves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic refraction and electrical resistivity geophysical techniques were used to reconstruct the internal architecture of a drumlin in Co. Down, Northern Ireland. Geophysical results were both validated and complemented by borehole drilling, ground water flow modelling, and geologic mapping. The geophysical anatomy of the drumlin consists of five successive layers with depth including; topsoil, partially saturated and saturated glacial tills, and weathered and more competent greywacke bedrock. There are numerous, often extensive inclusions of clay, sand, gravel, cobbles, and boulders within the topsoil and the till units. Together geophysical and geotechnical findings imply that the drumlin is part of the subglacial lodgement, melt-out, debris flow, sheet flow facies described by previous authors, and formed by re-sedimentation and streamlining of pre-existing sediments during deglaciation of the Late Devensian ice sheet. Seismic refraction imaging is particularly well suited to delineating layering within the drumlin, and is able to reconstruct depths to interfaces to within ± 0.5 m accuracy. Refraction imaging ascertained that the weathered bedrock layer is continuous and of substantial thickness, so that it acts as a basal aquifer which underdrains the bulk of the drumlin. Electrical resistivity imaging was found to be capable of delineating relative spatial changes in the moisture content of the till units, as well as mapping sedimentary inclusions within the till. The moisture content appeared to be elevated near the margins of the drumlin, which may infer a weakening of the drumlin slopes. Our findings advocate the use of seismic refraction and electrical resistivity methods in future sedimentological and geotechnical studies of internal drumlin architecture and drumlin formation, owing particularly to the superior, 3- D spatial coverage of these methods.