110 resultados para epistemological circle


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small mammals that inhabit arid and temporally unproductive environments use several methods to conserve energy. Here, we investigate the energetic role of sun basking in striped mice Rhabdomys pumilio from the Succulent Karoo desert in South Africa. We observed mice in front of their nests for 140 h and recorded the time they spent basking during the non-breeding (dry) and the breeding (wet) seasons. We measured temperature changes in model mice to provide an indication of the heat that can be absorbed from the sun. Finally, we measured the oxygen consumption (circle dot O-2) of mice at their basking sites in the field both in the sun and in the shade. This was accomplished using a portable respirometry system with a metabolism chamber, which could be placed in and out of the sun. Observations showed that mice basked more often during the non-breeding than during the breeding season. During the former season, mice spent an average of 11.9 +/- 1.1 min (se) in the morning and 5.5 +/- 0.5 min in the afternoon per day basking. Within the metabolism chamber, circle dot O-2 decreased when the animal was in the sunshine compared with the shade. This effect occurred independent of the ambient temperature (T-a), indicating that a significant amount of radiant energy was absorbed from the sun. Basking may be an alternative to other energy-acquisition behaviours, such as foraging, which might be particularly useful at times when food is scarce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vortex dynamics in inhomogeneous Bose-Einstein condensates are studied numerically in two and three dimensions. We simulate the precession of a single vortex around the center of a trapped condensate, and use the Magnus force to estimate the precession frequency. Vortex ring dynamics in a spherical trap are also simulated, and we discover that a ring undergoes oscillatory motion around a circle of maximum energy. The position of this locus is calculated as a function of the number of condensed atoms. In the presence of dissipation, the amplitude of the oscillation will increase, eventually resulting in self-annihilation of the ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nebular spectra of supernovae (SNe) offer an unimpeded view of the inner region of the ejecta, where most nucleosynthesis takes place. Optical spectra cover most, but not all, of the emitting elements and therefore offer only a partial view of the products of the explosion. Simultaneous optical-infrared spectra, on the other hand, contain emission lines of all important elements, from C and O through to the intermediate mass elements (IME) Mg, Si, S, Ca and to Fe and Ni. In particular, Si and S are best seen in the IR. The availability of IR data makes it possible to explore in greater detail the results of the explosion. SN 2007gr is the first Type Ic SN for which such data are available. Modelling the spectra with a non-local thermodynamic equilibrium (NLTE) code reveals that the inner ejecta contain similar to 1M(circle dot) of material within a velocity of approximate to 4500 km s(-1). The same mass of Ni-56 derived from the light-curve peak (0.076M(circle dot)) was used to power the spectrum, yielding consistent results. Oxygen is the dominant element, contributing similar to 0.8M(circle dot). The C/O ratio is

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDs) produced by the interaction of the ejecta Outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDs dust mass reaches a modest 3.0 x 10(-4) M-circle dot by day 230. While dust condensation within a CDs formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDs formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least similar to 8 x 10(-3) M-circle dot. This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present mid-infrared (5.2-15.2 mu m) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co (III)], which matches the blueshift of [Fe (II)] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive Ni-56 give M-56Ni approximate to 0.5 M-circle dot, for SN 2003hv, but only M-56Ni approximate to 0.13-0.22 M-circle dot for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present early-time optical and near-infrared photometry of supernova (SN) 2005cf. The observations, spanning a period from about 12 d before to 3 months after maximum, have been obtained through the coordination of observational efforts of various nodes of the European Supernova Collaboration and including data obtained at the 2-m Himalayan Chandra Telescope. From the observed light curve we deduce that SN 2005cf is a fairly typical SN Ia with a post-maximum decline [Delta m(15)(B)(true) = 1.12] close to the average value and a normal luminosity of M-B,M-max = -19.39 +/- 0.33. Models of the bolometric light curve suggest a synthesized Ni-56 mass of about 0.7 M-circle dot. The negligible host galaxy interstellar extinction and its proximity make SN 2005cf a good Type Ia SN template.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present optical and infrared observations of the unusual Type Ia supernova (SN) 2004eo. The light curves and spectra closely resemble those of the prototypical SN 1992A, and the luminosity at maximum (M-B = -19.08) is close to the average for a Type Ia supernova (SN Ia). However, the ejected Ni-56 mass derived by modelling the bolometric light curve (about 0.45M(circle dot)) lies near the lower limit of the Ni-56 mass distribution observed in normal SNe Ia. Accordingly, SN 2004eo shows a relatively rapid post-maximum decline in the light curve [Delta m(15)(B)(true) = 1.46], small expansion velocities in the ejecta and a depth ratio Si II lambda 5972/ Si II lambda 6355 similar to that of SN 1992A. The physical properties of SN 2004eo cause it to fall very close to the boundary between the faint, low-velocity gradient and high-velocity gradient subgroups proposed by Benetti et al. Similar behaviour is seen in a few other SNe Ia. Thus, there may in fact exist a few SNe Ia with intermediate physical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive light and colour curves for the Type Ia supernova (SN Ia) SN 2002er are presented as part of the European Supernova Collaboration. We have collected UBVRI photometry from 11 different telescopes covering the phases from 7 d before until 619 d after maximum light. Corrections for the different instrumental systems and the non-thermal spectrum of the supernova (S-corrections) have been applied. With the densely sampled light curves we can make detailed comparisons to other well-observed objects. SN 2002er most closely resembles SN 1996X after maximum, but clearly shows a different colour evolution before peak light and a stronger shoulder in V and R bands compared to other well-observed SNe Ia. In particular, the rise time appears to be longer than what is expected from the rise time versus decline rate relation. We use several methods to determine the reddening towards SN 2002er based on the colour evolution at near peak and at late phases. The uvoir (bolometric) light curve shows great similarity with SN 1996X, but also indications of a higher luminosity, longer rise time and a more pronounced shoulder 25 d past maximum. The interpretation of the light curves was carried out with two independent light curve codes. Both find that given the luminosity of SN 2002er the Ni-56 mass exceeds 0.6 M-circle dot with preferred values near 0.7 M-circle dot. Uncertainties in the exact distance to SN 2002er are the most serious limitation of this measurement. The light-curve modelling also indicates a high level of mixing of the nickel in the explosion of SN 2002er.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical and near-infrared (near-IR) observations of the Type Ic supernova (SN Ic) 2004aw are presented, obtained from -3 to +413 d with respect to the B-band maximum. The photometric evolution is characterized by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 d later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal SN Ic like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [O-I] lambda lambda 6300, 6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-IR. Using an analytical description of the light-curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0 M-circle dot, significantly larger than that in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3 M-circle dot of Ni-56 has been synthesized in the explosion. No connection to a GRB can be firmly established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the 1980s, there has existed a field of scholarly inquiry into a range of phenomena termed New Age. The relative lack of ethnographic studies in this field was identified several years ago, in response to research that focused merely on the discourses within alleged key writings. However, the employment of ethnographic methods does not by itself resolve the problems inherent in other modes of research; attention also has to be paid to how ethnography is used in practice. This article examines ethnographies of the New Age in terms of the extent to which they contextualize data within their immediate social frames, by paying attention to actors’ practices and interactions, and to the ways in which beliefs and discourses are constructed and contested. The article demonstrates the strong tendency among New Age ethnographic studies to veer from ‘the social’ and to rest instead on analytically problematic conceptualizations of agency. It argues that epistemological revision is required to form the basis of a more sociologically adequate understanding of the phenomena addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of 4.055259 +/- 0.000008 d, Transit Epoch T-0 = 2 455 342.9688 +/- 0.0002 (HJD), of duration 0.1168 +/- 0.0008 d. A combined analysis of the WASP photometry, high-precision follow-up transit photometry, and radial velocities yield a planetary mass of M-pl = 0.28 +/- 0.03 M-J and a radius of R-pl = 1.27 +/- 0.04 R-J, resulting in a mean density of 0.14 +/- 0.02 rho(J). The stellar parameters are mass M-star = 0.93 +/- 0.03 M-circle dot, radius R-star = 0.895 +/- 0.23 R-circle dot, and age 9(-4)(+3) Gyr. Only WASP-17b and WASP-31b have lower densities than WASP-39b, although they are slightly more massive and highly irradiated planets. From our spectral analysis, the metallicity of WASP-39 is measured to be [Fe/H] = -0.12 +/- 0.1 dex, and we find the planet to have an equilibrium temperature of 1116(-32)(+33) K. Both values strengthen the observed empirical correlation between these parameters and the planetary radius for the known transiting Saturn-mass planets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pre-explosion observations of the Type II-P supernovae 2006my, 2006ov and 2004et are re-analysed. In the cases of supernovae 2006my and 2006ov we argue that the published candidate progenitors are not coincident with their respective supernova sites in pre-explosion Hubble Space Telescope observations. We therefore derive upper luminosity and mass limits for the unseen progenitors of both these supernovae, assuming they are red supergiants: 2006my (log L/L-circle dot = 4.51; m

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 +/- 1 M-circle dot from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above similar to 20 M-circle dot may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type H SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and these SNe pose a challenge to stellar evolutionary theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.