96 resultados para emission of hydrogen sulfide into the gas phase
Resumo:
This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 mu m (O.D.) thermocouple has been inserted in a 250 mu m (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.
Resumo:
The electrochemical uptake of oxygen on a Ru(0001) electrode was investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry. An ordered (2 × 2)-O overlayer forms at a potential close to the hydrogen region. At +0.42 and +1.12 V vs Ag/AgCl, a (3 × 1) phase and a (1 × 1)-O phase, respectively, emerge. When the Ru electrode potential is maintained at +1.12 V for 2 min, RuO2 grows epitaxially with its (100) plane parallel to the Ru(0001) surface. In contrast to the RuO domains, the non-oxidized regions of the Ru electrode surface are flat. If, however, the electrode potential is increased to +1.98 V for 2 min, the remaining non-oxidized Ru area also becomes rough. These findings are compared with O overlayers and oxides on the Ru(0001) and Ru(101¯1) surfaces created by exposure to gaseous O under UHV conditions. On the other hand, gas-phase oxidation of the Ru(101¯0) surface leads to the formation of RuO with a (100) orientation. It is concluded that the difference in surface energy between RuO(110) and RuO(100) is quite small. RuO again grows epitaxially on Ru(0001), but with the (110) face oriented parallel to the Ru(0001) surface. The electrochemical oxidation of the Ru(0001) electrode surface proceeds via a 3-dimensional growth mechanism with a mean cluster size of 1.6 nm, whereas under UHV conditions, a 2-dimensional oxide film (1-2 nm thick) is epitaxially formed with an average domain size of 20 µm. © 2000 American Chemical Society.
Resumo:
The ultrafast photo-physical properties of DNA are crucial in providing a stable basis for life. Although the DNA bases efficiently absorb ultraviolet (UV) radiation, this energy can be dissipated to the surrounding environment by the rapid conversion of electronic energy to vibrational energy within about a picosecond. The intrinsic nature of this internal conversion process has previously been demonstrated through gas phase experiments on the bases, supported by theoretical calculations. De-excitation rates appear to be accelerated when individual bases are hydrogen bonded to solvent molecules or their complementary Watson-Crick pair. In this paper, the first gas-phase measurements of electronic relaxation in DNA nucleosides following UV excitation are reported. Using a pump-probe ionization scheme, the lifetimes for internal conversion to the ground state following excitation at 267 nm are found to be reduced by around a factor of two for adenosine, cytidine and thymidine compared with the isolated bases. These results are discussed in terms of a recent proposition that a charge transfer state provides an additional internal conversion pathway mediated by proton transfer through a sugar to base hydrogen bond.
Resumo:
Despite the numerous advantages of continuous processing, high-value chemical production is still dominated by batch techniques. In this paper, we investigate options for the continuous dehydrogenation of 1,2,3,4- tetrahydrocarbazole using a trickle bed reactor operating under realistic liquid velocities with and without the addition of a hydrogen acceptor. Here, a commercial 5 wt % Pd/Al2O3 catalyst was observed to slowly deactivate, hence proving unsuitable for continuous use. This deactivation was attributed to the strong adsorption of a byproduct on the surface of the support. Application of a base washing technique resolved this issue and a stable continuous reaction has been demonstrated. As was previously shown for the batch reaction, the addition of a hydrogen acceptor gas (propene) can increase the overall catalytic activity of the system.
Resumo:
The subambient behavior of aqueous mannitol solutions is of considerable relevance to the preparation of freeze dried formulations. In this investigation the properties of 3% w/v mannitol solutions were investigated using differential scanning calorimetry (DSC), cold stage microscopy (CSM), and X-ray diffraction (XRD) to identify the thermal transitions and structural transformations undergone by this system. It was found that on cooling from ambient the system formed ice at circa -20°C while a further exotherm was seen at approximately -30°C. Upon reheating an endotherm was seen at circa -30°C followed immediately by an exotherm at circa -25°C. Temperature cycling indicated that the thermal transitions observed upon reheating were not reversible. Modulated temperature DSC (MTDSC) indicated that the transitions observed upon reheating corresponded to a glass transition immediately followed by recrystallization, XRD data showed that recrystallization was into the ß form. Annealing at -35°C for 40 min prior to cooling and reheating resulted in a maximum enthalpy being observed for the reheating exotherm. It is concluded that on cooling 3% w/v aqueous mannitol solutions an amorphous phase is formed that subsequently recrystallises into the ß form. The study has also shown that DSC, CSM, and XRD are useful complementary techniques for the study of frozen systems
Resumo:
In this investigation we describe the preparation, physical characterisation and in vivo behaviour of solid dispersions of a liquid nutraceutical, ±-tocopherol, in Gelucire 44/14 with a view to establishing whether dispersion in this matrix may provide a means of formulating a liquid drug in a solid dosage form while also improving the oral bioavailability. Using Vitamin E Preparation USP as the source of ±-tocopherol, dispersions were prepared using a melt-fusion method with active loadings up to 50% (w/w) and characterised using differential scanning calorimetry and optical microscopy. Capsules containing 300 IU ±-tocopherol were manufactured and the absorption profiles compared to a commercial soft gelatin capsule preparation in healthy human volunteers. Confocal laser scanning microscopy (CLSM) studies were performed in order to elucidate the mechanism by which drug release may be occurring. Differential scanning calorimetry studies indicated that the presence of the active had a negligible effect on the melting profile of the carrier, indicating limited miscibility between the two components, a conclusion supported by the microscopy studies. Similarly, the dispersions were shown to exhibit a glass transition corresponding to the incorporated drug, indicating molecular cooperativity and hence phase separation from the lipid base. Despite the phase separation, it was noted that capsules stored for 18 months under ambient conditions showed no evidence of leakage. Bioavailability studies in six healthy male volunteers indicated that the Gelucire 44/14 formulation showed an approximately two-fold increase in total ±-tocopherol absorption compared to the commercial preparation. Confocal laser scanning microscopy studies indicated that, on contact with water, the dispersions formed two interfacial layers, from which the Gelucire 44/14 disperses in the liquid medium as small particles. Furthermore, evidence was obtained for the dispersed material becoming incorporated into the hydrated lipid. In conclusion, the dispersion of the liquid drug in Gelucire 44/14 appears to allow the dual advantages of the preparation of a solid formulation and improved bioavailability of this material.
Resumo:
Observational evidence of gentle chromospheric evaporation during the impulsive phase of a C9.1 solar flare is presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Coronal Diagnostic Spectrometer on board the Solar and Heliospheric Observatory. Until now, evidence of gentle evaporation has often been reported during the decay phase of solar flares, where thermal conduction is thought to be the driving mechanism. Here we show that the chromospheric response to a low flux of nonthermal electrons (>= 5 cm(-2) s(-1)) results in plasma upflows of 13 +/- 16, 16 +/- 18, and 110 +/- 58 km s(-1) in the cool He I and O V emission lines and the 8 MK Fe XIX line, respectively. These findings, in conjunction with other recently reported work, now confirm that the dynamic response of the solar atmosphere is sensitively dependent on the flux of incident electrons.
Resumo:
Decay dynamics of dielectronic recombination (DR) processes of H-like titanium ions was investigated with an electron beam ion trap. In the DR of H-like ions a K-shell vacancy is available even after the decay of the doubly excited state produced by the recombination. Therefore secondary X-ray emission is possible. An observed X-ray spectrum of DR obtained in the present experiment was well reproduced theoretically by taking into account the secondary X-rays. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ground state energy, structure, and harmonic vibrational modes of 1-butyl-3-methylimidazolium triflate ([bmim][Tf]) clusters have been computed using an all-atom empirical potential model. Neutral and charged species have been considered up to a size (30 [bmim][Tf] pairs) well into the nanometric range. Free energy computations and thermodynamic modeling have been used to predict the equilibrium composition of the vapor phase as a function of temperature and density. The results point to a nonnegligible concentration of very small charged species at pressures (P ~ 0.01 Pa) and temperatures (T 600 K) at the boundary of the stability range of [bmim][Tf]. Thermal properties of nanometric neutral droplets have been investigated in the 0 T 700 K range. A near-continuous transition between a liquidlike phase at high T and a solidlike phase at low T takes place at T ~ 190 K in close correspondence with the bulk glass point Tg ~ 200 K. Solidification is accompanied by a transition in the dielectric properties of the droplet, giving rise to a small permanent dipole embedded into the solid cluster. The simulation results highlight the molecular precursors of several macroscopic properties and phenomena and point to the close competition of Coulomb and dispersion forces as their common origin.
Resumo:
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between 2 × 104 and 1.5 × 105 yr. We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.
Resumo:
Micro plasmas operated at ambient pressure with dimensions of the confining geometry in the order of a few ten micrometers to a millimeter are actually in the focus of interest due to the broad regime of applicability they offer and due to a similarly broad range of open physical questions. Here we present optical measurements within the discharge core and the effluent region of an especially developed micro discharge jet. To get an understanding of the complex system of this discharge it is important to analyse transport phenomena of energy and particles within both parts of the discharge by various highly sophisticated diagnostics. As a consequence of the limited access and the dimensions of the micro discharge most of these diagnostics are optical. Here we present diagnostics applied to determine spatially resolved absolute atomic oxygen densities as the most reactive constituent of the effluent, density maps of ozone as final reaction product of the gas chemical chain induced by the discharge and phase resolved optical emission spectroscopy yielding insight into the excitation dynamics of the discharge. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
The oxidation of hydrogen was studied at an activated platinum micro-electrode by cyclic voltammetry in the following ionic liquids: [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6.2.2.2][NTf2], [P-14.6.6.6][NTf2], [C(4)mim][OTf], [C(4)mim][BF4] [C(4)mim][PF6], [C(4)mim][NO3], [C(6)mim]Cl and [C(6)mim][FAP] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [N-6,N-2,N-2,N-2](+) = n-hexyltriethylammonium, [P-14,P-6,P-6,P-6](+) = tris(n-hexyltetradecyl) phosphonium, [NTf2](-) = bis(trifluoromethylsulfonyl)amide, [OTf] = trifluoromethlysulfonate and [FAP](-) = tris(perfluoroethyl)trifluorophosphate). Activation of the Pt electrode was necessary to obtain reliable and reproducible voltammetry. After activation of the electrode, the H-2 oxidation waves were nearly electrochemically and chemically reversible in [C(n)mim][NTf2] ionic liquids, chemically irreversible in [C(6)mim]Cl and [C(4)mim][NO3], and showed intermediate characteristics in OTf-, [BF4](-), [PF6](-), [FAP](-) and other [NTf2](-)-based ionic liquids. These differences reflect the contrasting interactions of protons with the respective RTIL anions. The oxidation peaks are reported relative to the half-wave potential of the cobaltocenium/cobaltocene redox couple in all ionic liquids studied, giving an indication of the relative proton interactions of each ionic liquid. A preliminary temperature study (ca. 298-333 K) has also been carried out in some of the ionic liquids. Diffusion coefficients and solubilities of hydrogen at 298 K were obtained from potential-step chronoamperometry, and there was no relationship found between the diffusion coefficients and solvent viscosity. RTILs possessing [NTf2](-) and [FAP](-) anions showed the highest micro-electrode peak currents for the oxidation in H-2 saturated solutions, with[C(4)mim][NTf2] toeing the most sensitive. The large number of available RTIL anion/cation pairs allows scope for the possible electrochemical detection of hydrogen gas for use in gas sensor technology. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical oxidation of dissolved hydrogen gas has been studied in a range of room-temperature ionic liquids (RTILs), namely [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6,N-2,N-2,N-2][NTf2], [P-14,P-6,P-6,P-6][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], [C(4)mim][OTf], and [C(6)mim]Cl on a platinum microdisk electrode of diameter 10 mu m. In all cases, except [C(6)mim]Cl, a broad quasi-electrochemically reversible oxidation peak between 0.3 to 1.3 V vs Ag was seen prior to electrode activation ([C(6)mim]Cl showed an almost irreversible wave). When the electrode was pre-anodized (