86 resultados para electron-positron beams
Resumo:
The growth and saturation of Buneman-type instabilities is examined with a particle-in-cell (PIC) simulation for parameters that are representative for the foreshock region of fast supernova remnant shocks. A dense ion beam and the electrons correspond to the upstream plasma and a fast ion beam to the shock-reflected ions. The purpose of the 2D simulation is to identify the nonlinear saturation mechanisms, the electron heating and potential secondary instabilities that arise from anisotropic electron heating and result in the growth of magnetic fields. We confirm that the instabilities between both ion beams and the electrons saturate by the formation of phase space holes by the beam-aligned modes. The slower oblique modes accelerate some electrons, but they cannot heat up the electrons significantly before they are trapped by the faster beam-aligned modes. Two circular electron velocity distributions develop, which are centred around the velocity of each ion beam. They develop due to the scattering of the electrons by the electrostatic wave potentials. The growth of magnetic fields is observed, but their amplitude remains low.
Resumo:
Freestanding BaTiO3 nanodots exhibit domain structures characterized by distinct quadrants of ferroelastic 90 domains in transmission electron microscopy (TEM) observations. These differ significantly from flux-closure domain patterns in the same systems imaged by piezoresponse force microscopy. Based upon a series of phase field simulations of BaTiO3 nanodots, we suggest that the TEM patterns result from a radial electric field arising from electron beam charging of the nanodot. For sufficiently large charging, this converts flux-closure domain patterns to quadrant patterns with radial net polarizations. Not only does this explain the puzzling patterns that have been observed in TEM studies of ferroelectric nanodots, but also suggests how to manipulate ferroelectric domain patterns via electron beams.
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10(19) W/cm(2). High-resolution X-ray spectroscopy of the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams
Resumo:
Charge changing processes of MeV ions penetrating through liquid spray is confirmed to be abundant source of various energetic negative ion and neutral atom beams its generic nature is demonstrated.
Resumo:
The technique of double translational energy spectroscopy.(DTES), recently successfully developed in this laboratory for use with targets of atomic hydrogen, has been used to study one-electron capture by ground-state N2+(2s22p)(2)p(0) ions in collisions with hydrogen atoms at energies within the range 0.8-6.0 keV. Cross sections for the formation of the main excited product channels have been determined. The measurements allow a re-evaluation of our previous TES measurements carried out with N2+ primary beams containing an admixture of metastable N2+(2s2p2)(4)p ions. The main findings of these earlier measurements are confirmed and the DTES measurements now remove any ambiguity in interpretation of the experimental data. While recent theoretical studies correctly predict the two main N+ D-3(0) and P-3(0) product channels, the quantitative agreement with experiment is only partially satisfactory.
Resumo:
We present a technique for simultaneous focusing and energy selection of high-current, mega-electron volt proton beams With the use of radial, transient electric fields (107 to 1010 volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of the transient nature of the focusing fields, the proposed method allows selection of a desired range out of the spectrum of the polyenergetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, such as their broad spectrum and divergence at the source.
Resumo:
This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.
Resumo:
A method of injecting metallic elements into an electron-beam ion trap (EBIT) is described. The method is advantageous over the conventional coaxial and pulsed injection methods in two ways: (a) complicated switching of injection and extraction beams can be avoided when extracting beams of highly charged ions from the EBIT and (b) a beam of stable intensity can be achieved. This method may be applicable to any metallic elements or metallic compounds that have vapor pressures of similar to 0.1 Pa at a temperature lower than 1900 degrees C. We have employed this method for the extraction of highly charged ions of Bi, Er, Fe, and Ho. (c) 2006 American Institute of Physics.
Resumo:
Recent advances in the development of 2D microstrip detectors open up new possibilities for hard x-ray spectroscopy, in particular for polarization studies. These detectors make ideal Compton polarimeters, which enable us to study precisely the polarization of hard x-rays. Here, we present recent results from measurements of Radiative Electron Capture into the K-shell of highly-charged uranium ions. The experiments were performed with a novel 2D Si(Li) Compton polarimeter at the Experimental Storage Ring at GSI. Stored and cooled beams of U91+ and U92+ ions, with kinetic energies of 43 MeV/u and 96 MeV/u respectively, were crossed with a hydrogen gasjet. The preliminary data analysis shows x-rays from the K-REC process, emitted perpendicularly to the ion beam, to be strongly linearly polarized.
Resumo:
A computer code has been developed to simulate and study the evolution of ion charge states inside the trap region of an electron beam ion trap. In addition to atomic physics phenomena previously included in similar codes such as electron impact ionization, radiative recombination, and charge exchange, several aspects of the relevant physics such as dielectronic recombination, ionization heating, and ion cloud expansion have been included for the first time in the model. The code was developed using object oriented concepts with database support, making it readable, accurate, and well organized. The simulation results show a good agreement with various experiments, and give useful information for selection of operating conditions and experiment design.
Resumo:
A many-body theory approach to the calculation of gamma spectra of positron annihilation on many-electron atoms is developed. We evaluate the first-order correlation correction to the annihilation vertex and perform numerical calculations for the noble gas atoms. Extrapolation with respect to the maximal orbital momentum of the intermediate electron and positron states is used to achieve convergence. The inclusion of correlation corrections improves agreement with experimental gamma spectra.
Resumo:
This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear.
Resumo:
This article presents an overview of current understanding of the interaction of low-energy positrons with molecules with emphasis on resonances, positron attachment, and annihilation. Measurements of annihilation rates resolved as a function of positron energy reveal the presence of vibrational Feshbach resonances (VFRs) for many polyatomic molecules. These resonances lead to strong enhancement of the annihilation rates. They also provide evidence that positrons bind to many molecular species. A quantitative theory of VFR-mediated attachment to small molecules is presented. It is tested successfully for selected molecule (e.g., methyl halides and methanol) where all modes couple to the positron continuum. Combination and overtone resonances are observed and their role is elucidated. Molecules that do not bind positrons and hence do not exhibit such resonances are discussed. In larger molecules, annihilation rates from VFR far exceed those explicable on the basis of single-mode resonances. These enhancements increase rapidly with the number of vibrational degrees of freedom, approximately as the fourth power of the number of atoms in the molecule. While the details are as yet unclear, intramolecular vibrational energy redistributio (IVR) to states that do not couple directly to the positron continuum appears to be responsible for these enhanced annihilation rates. In connection with IVR, experimental evidence indicates that inelastic positron escape channels are relatively rare. Downshifts of the VFR from the vibrational mode energies, obtained by measuring annihilate rates as a function of incident positron energy, have provided binding energies for 30 species. Their dependence upon molecular parameters and their relationship to positron-atom and positron-molecule binding-energy calculations are discussed. Feshbach resonances and positron binding to molecules are compared with the analogous electron-molecul (negative-ion) cases. The relationship of VFR-mediated annihilation to other phenomena such as Doppler broadening of the gamma-ray annihilation spectra, annihilation of thermalized positrons in gases, and annihilation-induced fragmentation of molecules is discussed. Possible areas for future theoretical and experimental investigation are also discussed.