48 resultados para duchenne muscular dystrophy
Resumo:
The measurement and representation of the electrical activity of muscles [electromyography (EMG)] have a long history from the Victorian Era until today. Currently, EMG has uses both as a research tool, in noninvasively recording muscle activation, and clinically in the diagnosis and assessment of nerve and muscle disease and injury as well as in assessing the recovery of neuromuscular function after nerve damage. In the present report, we describe the use of a basic EMG setup in our teaching laboratories to demonstrate some of these current applications. Our practical also illustrates some fundamental physiological and structural properties of nerves and muscles. Learning activities include 1) displaying the recruitment of muscle fibers with increasing force development; 2) the measurement of conduction velocity of motor nerves; 3) the assessment of reflex delay and demonstration of Jendrassik's maneuver; and 4) a Hoffman reflex experiment that illustrates the composition of mixed nerves and the differential excitability thresholds of fibers within the same nerve, thus aiding an understanding of the reflex nature of muscle control. We can set up the classes at various levels of inquiry depending on the needs/professional requirements of the class. The results can then provide an ideal platform for a discovery learning session/tutorial on how the central nervous system controls muscles, giving insights on how supraspinal control interacts with reflexes to give smooth, precise muscular activation.
Resumo:
Phalloidin fluorescence technique, enzyme cytochemistry and immunocytochemistry in conjunction with confocal scanning laser microscopy were used for the first time to describe the nervous and muscle systems of the viviparous monogenean parasite, Gyrodactylus rysavyi inhabiting the gills and skin of the Nile catfish Clarias gariepinus. The body wall muscles are composed of an outer layer of circular fibres, an intermediate layer of paired longitudinal fibres and an inner layer of well-spaced bands of diagonal fibres arranged in two crossed directions. The musculature of the pharynx, intestine, reproductive tract and the most prominent muscles of the haptor were also described. Two characteristic muscular pads were found lying in the anterior region of the haptor in close contact with the hamuli. To each one of these pads, a group of ventral extrinsic muscles was connected. The role of this ventral extrinsic muscle in the body movement was discussed. The mechanism operating the marginal hooklets was also discussed. The central nervous system (CNS) consists of paired cerebral ganglia from which three pairs of longitudinal ventral, lateral and dorsal nerve cords arise. The nerve cords are connected at intervals by many transverse connectives. The CNS is better developed ventrally than dorsally or laterally and it has the highest reactivity for all neuroactive substances examined. Both the central and the peripheral nervous system (PNS) are bilaterally symmetrical. Structural and functional correlates of the neuromusculature of the pharynx, haptor and reproductive tracts were explained. The results implicated acetylcholine, FMRFamide-related peptides (FaRPs) and serotonin in sensory and motor function. The results were compared with those of the monogeneans Macrogyrodactylus clarii and M. congolensis inhabiting the gills and skin respectively of the same host fish C. gariepinus.
Resumo:
In Europe, maximum journey time for transported sheep is set at 29. h (EC Regulation 1/2005), after which animals must be unloaded, fed and watered in control posts stopping for 24. h, as all other species, before continuing their journey. The industry considers these resting times too general, not taking into account the peculiar differences between species or age classes. Also, loading and unloading have been reported to be detrimental for the animals. Therefore, the industry pushes to reduce the times at control post and avoid unloading the animals from the truck. Since there is little information concerning the effect of resting in a stationary truck after long journeys, the present study aims to evaluate the effect of an 8. h rest stop on the truck for transported ewes compared to being unloaded for resting in a control post for the same amount of time, considering physiological and behavioural measures. Two groups of ewes were transported for 29. h, after which one was unloaded and housed in a pen (P) at the control post while the other was left inside the truck (T). After 8. h stop, a further 6. h travel was headed to the farm of origin. A third group (C) stayed at the farm as control. During the stop, standing, resting, moving and eating behaviour of all groups was recorded. Blood parameters, salivary and faecal cortisol were assessed at different stages. The behaviour of P animals during the resting period was more similar to C than to T ones, where feeding and lying behaviours were restricted by the limited space allowance on the truck. After returning to the farm of origin, both T and P animals showed different parameters' levels as compared to C. P ewes showed a mean loss weight of 2. kg not recorded in group T and showed higher signs of muscular damage compared to C group. It was concluded that, with so short resting times as 8. h, there is no clear advantages in terms of animal welfare for avoiding the unloading and loading of the animals in the control post after long journeys.