51 resultados para drivers of SR technology adoption
Resumo:
Young and elderly drivers are reported to have markedly greater crash rates than drivers of other ages, but they travel less frequently and represent a minority of road users. Consequently, many crashes involving young or elderly drivers also involve drivers of middle age ranges who travel more frequently.
Resumo:
Background: There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias.
Objective: Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture.
Design: Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria.
Setting: Critical care departments within NHS hospitals in the north-west of England.
Participants: Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation.
Main outcome measures: SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard.
Results: Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4–16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy.
Conclusion: SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error.
Resumo:
This paper focuses on the contribution that the study of bone technology is making to the understanding of early tropical subsistence in Southeast Asia. Newly completed research suggests that during the period from the terminal Pleistocene to mid Holocene, bone tools may have featured prominently in coastal subsistence. There are indications that this technology may have had a particular association with hunting and gathering in the mangrove forests that proliferated along many coasts during this period. The study of these tools thus represents a rare chance to examine prehistoric extractive technologies, which are generally agreed to have been predominantly made on organic, nonpreserving media. The evidence presented also suggests that prehistoric foragers from this region possessed a good working understanding of the mechanical properties of bone and used bone implements where conditions and needs suited the parameters of this material. © 2005 by the University of Hawai'i Press.
Resumo:
Development of formulations and drug delivery strategies for paediatric use is challenging, partially due to the age ranges within this population, resulting in varying requirements to achieve optimised patient outcomes. Although the oral route of drug delivery remains the preferred option, there are problematic issues, such as difficulty swallowing and palatability of medicines specific to this population. The parenteral route is not well accepted by children due to needle-related fear and pain. Accordingly, a plethora of alternative routes of drug administration have been investigated. Microneedles (MN) breach the stratum corneum (SC), the outermost layer of skin, increasing the number of drug substances amenable to transdermal delivery. This strategy involves the use of micron-sized needles to painlessly, and without drawing blood, create transient aqueous conduits in the SC. In this study, polymeric dissolving MN and hydrogel-forming MN were fabricated incorporating two model drugs commonly used in paediatric patients (caffeine and lidocaine hydrochloride). The potential efficacy of these MN for paediatric dosing was investigated via in vitro and in vivo studies. Views pertaining to MN technology were sought amongst school children in Northern Ireland, members of the UK general public and UK-based paediatricians, to determine perceived benefits, acceptance, barriers and concerns for adoption of this technology. In this study, polymeric MN were shown to substantially enhance skin permeability of the model therapeutic molecules in vitro and in vivo. In particular, hydrogel-forming MN led to a 6.1-fold increase in caffeine delivery whilst lidocaine HCl delivery was increased by 3.3-fold using dissolving MN in vitro. Application of caffeine-loaded MN led to a caffeine plasma concentration of 23.87μg/mL in rats at 24h. This research also highlighted a strong consensus regarding MN technology amongst schoolchildren, paediatricians and the general public, regarding potential use of MN in the paediatric population. Overall, 93.6% of general public respondents and 85.9% of paediatricians regarded the use of MN as a positive approach.
Wireless electrochemical modification of catalytic activity on a mixed protonic-electronic conductor
Resumo:
A novel approach to electrochemical modification of catalytic activity using a wireless configuration has been undertaken. This paper presents preliminary results on the modification of a platinum catalyst film supported on a pellet of Sr0.97Ce0.9Yb0.1O3-δ (SCYb), considered to be a mixed protonic-electronic conductor under reducing conditions. The wireless configuration utilises the mixed ionic and electronic conductivity of the supporting membrane to supply an ionic promoting species to the catalyst surface. Control of the flux of this species is achieved by adjusting the effective hydrogen chemical potential difference across the membrane in a dual-chamber reactor with one chamber acting as the "reaction side" and the other as the "sweep side". The reaction rate can be promoted by up to a factor of 1.6, for temperatures around 500 °C and low reactant concentrations, when hydrogen is introduced on the sweep side of the membrane reactor. The use of helium, moist helium and oxygen in helium as sweep gases did not modify the reaction rate. © 2007 Elsevier B.V. All rights reserved.