81 resultados para drive chains
Resumo:
An approximate Kohn-Sham (KS) exchange potential v(xsigma)(CEDA) is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. v(xsigma)(CEDA) is an explicit functional of the occupied KS orbitals, which has the Slater v(Ssigma) and response v(respsigma)(CEDA) potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities \psi(isigma)\(2), as well as "off-diagonal" ones from the occupied-occupied orbital products psi(isigma)psi(j(not equal1)sigma). Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies epsilon(isigma) are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-epsilon(isigma) values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of v(xsigma)(CEDA) appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains H-n over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential. (C) 2002 American Institute of Physics.
Resumo:
We investigate the entanglement spectrum near criticality in finite quantum spin chains. Using finite size scaling we show that when approaching a quantum phase transition, the Schmidt gap, i.e., the difference between the two largest eigenvalues of the reduced density matrix ?1, ?2, signals the critical point and scales with universal critical exponents related to the relevant operators of the corresponding perturbed conformal field theory describing the critical point. Such scaling behavior allows us to identify explicitly the Schmidt gap as a local order parameter.
Resumo:
The operation of supply chains (SCs) has for many years been focused on efficiency, leanness and responsiveness. This has resulted in reduced slack in operations, compressed cycle times, increased productivity and minimised inventory levels along the SC. Combined with tight tolerance settings for the realisation of logistics and production processes, this has led to SC performances that are frequently not robust. SCs are becoming increasingly vulnerable to disturbances, which can decrease the competitive power of the entire chain in the market. Moreover, in the case of food SCs non-robust performances may ultimately result in empty shelves in grocery stores and supermarkets.
The overall objective of this research is to contribute to Supply Chain Management (SCM) theory by developing a structured approach to assess SC vulnerability, so that robust performances of food SCs can be assured. We also aim to help companies in the food industry to evaluate their current state of vulnerability, and to improve their performance robustness through a better understanding of vulnerability issues. The following research questions (RQs) stem from these objectives:
RQ1: What are the main research challenges related to (food) SC robustness?
RQ2: What are the main elements that have to be considered in the design of robust SCs and what are the relationships between these elements?
RQ3: What is the relationship between the contextual factors of food SCs and the use of disturbance management principles?
RQ4: How to systematically assess the impact of disturbances in (food) SC processes on the robustness of (food) SC performances?
To answer these RQs we used different methodologies, both qualitative and quantitative. For each question, we conducted a literature survey to identify gaps in existing research and define the state of the art of knowledge on the related topics. For the second and third RQ, we conducted both exploration and testing on selected case studies. Finally, to obtain more detailed answers to the fourth question, we used simulation modelling and scenario analysis for vulnerability assessment.
Main findings are summarised as follows.
Based on an extensive literature review, we answered RQ1. The main research challenges were related to the need to define SC robustness more precisely, to identify and classify disturbances and their causes in the context of the specific characteristics of SCs and to make a systematic overview of (re)design strategies that may improve SC robustness. Also, we found that it is useful to be able to discriminate between varying degrees of SC vulnerability and to find a measure that quantifies the extent to which a company or SC shows robust performances when exposed to disturbances.
To address RQ2, we define SC robustness as the degree to which a SC shows an acceptable performance in (each of) its Key Performance Indicators (KPIs) during and after an unexpected event that caused a disturbance in one or more logistics processes. Based on the SCM literature we identified the main elements needed to achieve robust performances and structured them together to form a conceptual framework for the design of robust SCs. We then explained the logic of the framework and elaborate on each of its main elements: the SC scenario, SC disturbances, SC performance, sources of food SC vulnerability, and redesign principles and strategies.
Based on three case studies, we answered RQ3. Our major findings show that the contextual factors have a consistent relationship to Disturbance Management Principles (DMPs). The product and SC environment characteristics are contextual factors that are hard to change and these characteristics initiate the use of specific DMPs as well as constrain the use of potential response actions. The process and the SC network characteristics are contextual factors that are easier to change, and they are affected by the use of the DMPs. We also found a notable relationship between the type of DMP likely to be used and the particular combination of contextual factors present in the observed SC.
To address RQ4, we presented a new method for vulnerability assessments, the VULA method. The VULA method helps to identify how much a company is underperforming on a specific Key Performance Indicator (KPI) in the case of a disturbance, how often this would happen and how long it would last. It ultimately informs the decision maker about whether process redesign is needed and what kind of redesign strategies should be used in order to increase the SC’s robustness. The VULA method is demonstrated in the context of a meat SC using discrete-event simulation. The case findings show that performance robustness can be assessed for any KPI using the VULA method.
To sum-up the project, all findings were incorporated within an integrated framework for designing robust SCs. The integrated framework consists of the following steps: 1) Description of the SC scenario and identification of its specific contextual factors; 2) Identification of disturbances that may affect KPIs; 3) Definition of the relevant KPIs and identification of the main disturbances through assessment of the SC performance robustness (i.e. application of the VULA method); 4) Identification of the sources of vulnerability that may (strongly) affect the robustness of performances and eventually increase the vulnerability of the SC; 5) Identification of appropriate preventive or disturbance impact reductive redesign strategies; 6) Alteration of SC scenario elements as required by the selected redesign strategies and repeat VULA method for KPIs, as defined in Step 3.
Contributions of this research are listed as follows. First, we have identified emerging research areas - SC robustness, and its counterpart, vulnerability. Second, we have developed a definition of SC robustness, operationalized it, and identified and structured the relevant elements for the design of robust SCs in the form of a research framework. With this research framework, we contribute to a better understanding of the concepts of vulnerability and robustness and related issues in food SCs. Third, we identified the relationship between contextual factors of food SCs and specific DMPs used to maintain robust SC performances: characteristics of the product and the SC environment influence the selection and use of DMPs; processes and SC networks are influenced by DMPs. Fourth, we developed specific metrics for vulnerability assessments, which serve as a basis of a VULA method. The VULA method investigates different measures of the variability of both the duration of impacts from disturbances and the fluctuations in their magnitude.
With this project, we also hope to have delivered practical insights into food SC vulnerability. First, the integrated framework for the design of robust SCs can be used to guide food companies in successful disturbance management. Second, empirical findings from case studies lead to the identification of changeable characteristics of SCs that can serve as a basis for assessing where to focus efforts to manage disturbances. Third, the VULA method can help top management to get more reliable information about the “health” of the company.
The two most important research opportunities are: First, there is a need to extend and validate our findings related to the research framework and contextual factors through further case studies related to other types of (food) products and other types of SCs. Second, there is a need to further develop and test the VULA method, e.g.: to use other indicators and statistical measures for disturbance detection and SC improvement; to define the most appropriate KPI to represent the robustness of a complete SC. We hope this thesis invites other researchers to pick up these challenges and help us further improve the robustness of (food) SCs.
Resumo:
We perform an extensive study of the properties of global quantum correlations in finite-size one-dimensional quantum spin models at finite temperature. By adopting a recently proposed measure for global quantum correlations (Rulli and Sarandy 2011 Phys. Rev. A 84 042109), called global discord, we show that critical points can be neatly detected even for many-body systems that are not in their ground state. We consider the transverse Ising model, the cluster-Ising model where three-body couplings compete with an Ising-like interaction, and the nearest-neighbor XX Hamiltonian in transverse magnetic field. These models embody our canonical examples showing the sensitivity of global quantum discord close to criticality. For the Ising model, we find a universal scaling of global discord with the critical exponents pertaining to the Ising universality class.
Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response
Resumo:
Multiple sclerosis is considered a disease of complex autoimmune etiology, yet there remains a lack of consensus as to specific immune effector mechanisms. Recent analyses of experimental autoimmune encephalomyelitis, the common mouse model of multiple sclerosis, have investigated the relative contribution of Th1 and Th17 CD4 T cell subsets to initial autoimmune central nervous system (CNS) damage. However, inherent in these studies are biases influenced by the adjuvant and toxin needed to break self-tolerance. We investigated spontaneous CNS disease in a clinically relevant, humanized, T cell receptor transgenic mouse model. Mice develop spontaneous, ascending paralysis, allowing unbiased characterization of T cell immunity in an HLA-DR15-restricted T cell repertoire. Analysis of naturally progressing disease shows that IFN?(+) cells dominate disease initiation with IL-17(+) cells apparent in affected tissue only once disease is established. Tregs accumulate in the CNS but are ultimately ineffective at halting disease progression. However, ablation of Tregs causes profound acceleration of disease, with uncontrolled infiltration of lymphocytes into the CNS. This synchronous, severe disease allows characterization of the responses that are deregulated in exacerbated disease: the correlation is with increased CNS CD4 and CD8 IFN? responses. Recovery of the ablated Treg population halts ongoing disease progression and Tregs extracted from the central nervous system at peak disease are functionally competent to regulate myelin specific T cell responses. Thus, in a clinically relevant mouse model of MS, initial disease is IFN? driven and the enhanced central nervous system responses unleashed through Treg ablation comprise IFN? cytokine production by CD4 and CD8 cells, but not IL-17 responses.
Resumo:
Bridge structures are continuously subject to degradation due to the environment, ageing and excess loading. Periodic monitoring of bridges is therefore a key part of any maintenance strategy as it can give early warning if a bridge becomes unsafe. This article investigates an alternative method for the monitoring of bridge dynamic behaviour: a truck-trailer vehicle system, with accelerometers fitted to the axles of the trailer. The method aims to detect changes in the damping of a bridge, which may indicate the existence of damage. A simplified vehicle-bridge interaction model is used in theoretical simulations to assess the effectiveness of the method in detecting those changes. The influence of road profile roughness on the vehicle vibration is overcome by recording accelerations from both axles of a trailer and then analysing the spectra of the difference in the accelerations between the two axles. The effectiveness of the approach in detecting damage simulated as a loss in stiffness is also investigated. In addition, the sensitivity of the approach to the vehicle speed, road roughness class, bridge span length, changes in the equal axle properties and noise is investigated.
Resumo:
This study presents a vibration-based health monitoring strategy for short span bridges utilizing an inspection vehicle. How to screen the health condition of short span bridges in terms of a drive-by bridge inspection is described. Feasibility of the drive-by bridge inspection is investigated through a scaled laboratory moving vehicle experiment. The feasibility of using an instrumented vehicle to detect the natural frequency and changes in structural damping of a model bridge was observed. Observations also demonstrated the possibility of diagnosis of bridges by comparing patterns of identified bridge dynamic parameters through periodical monitoring. It was confirmed that the moving vehicle method identifies the damage location and severity well.
Resumo:
This paper presents a novel method to carry out monitoring of transport infrastructure such as pavements and bridges through the analysis of vehicle accelerations. An algorithm is developed for the identification of dynamic vehicle-bridge interaction forces using the vehicle response. Moving force identification theory is applied to a vehicle model in order to identify these dynamic forces between the vehicle and the road and/or bridge. A coupled half-car vehicle-bridge interaction model is used in theoretical simulations to test the effectiveness of the approach in identifying the forces. The potential of the method to identify the global bending stiffness of the bridge and to predict the pavement roughness is presented. The method is tested for a range of bridge spans using theoretical simulations and the influences of road roughness and signal noise on the accuracy of the results are investigated.
Resumo:
This paper presents the results of an experimental investigation, carried out in order to verify the feasibility of a ‘drive-by’ approach which uses a vehicle instrumented with accelerometers to detect and locate damage in a bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform and damage indicators are evaluated and compared. Alternative statistical pattern recognition techniques are incorporated to allow for repeated vehicle passes. Parameters such as vehicle speed, damage level, location and road roughness are varied in simulations to investigate the effect. A scaled laboratory experiment is carried out to assess the effectiveness of the approach in a more realistic environment, considering a number of bridge damage scenarios.