57 resultados para diamond machining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using molecular dynamics (MD) simulation, this paper investigates anisotropic cutting behaviour of single crystal silicon in vacuum under a wide range of substrate temperatures (300 K, 500 K, 750 K, 850 K, 1173 K and 1500 K). Specific cutting energy, force ratio, stress in the cutting zone and cutting temperature were the indicators used to quantify the differences in the cutting behaviour of silicon. A key observation was that the specific cutting energy required to cut the (111) surface of silicon and the von Mises stress to yield the silicon reduces by 25% and 32%, respectively, at 1173 K compared to what is required at 300 K. The room temperature cutting anisotropy in the von Mises stress and the room temperature cutting anisotropy in the specific cutting energy (work done by the tool in removing unit volume of material) were obtained as 12% and 16% respectively. It was observed that this changes to 20% and 40%, respectively, when cutting was performed at 1500 K, signifying a very strong correlation between the anisotropy observed during cutting and the machining temperature. Furthermore, using the atomic strain criterion, the width of primary shear zone was found to vary with the orientation of workpiece surface and temperature i.e. it remains narrower while cutting the (111) surface of silicon or at higher machining temperatures. A major anecdote of the study based on the potential function employed in the study is that, irrespective of the cutting plane or the cutting temperature, the state of the cutting edge of the diamond tool did not show direct diamond to graphitic phase transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this seminar, I will talk about the discovery of the diamond pyramid structures in the electroless copper deposits on both epoxy and stainless steel substrates. The surface morphology of the structure was characterized with scanning electron microscopy (SEM). According to the morphological feature of the structure, an atom model was brought forward in order to describe the possible mechanism of forming such structure. Molecular dynamics simulations were then carried out to investigate the growing process of the diamond pyramid structure. The final structures of the simulation were compared with the SEM images and the atomic model. The radial distribution function of the final structures of the simulation was compared with that calculated from the X-ray diffraction pattern of the electroless copper deposit sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the realisation of precision surface finish (Ra 30 nm) on AISI 4340 steel using a conventional turret lathe by adapting and incorporating a surface defect machining (SDM) method [Wear, 302, 2013 (1124-1135)]. Conventional ways of machining materials are limited by the use of a critical feed rate, experimentally determined as 0.02 mm/rev, beyond which no appreciable improvement in the machined quality of the surface is obtained. However, in this research, the novel application of an SDM method was used to overcome this minimum feed rate limitation ultimately reducing it to 0.005 mm/rev and attaining an average machined surface roughness of 30 nm. From an application point of view, such a smooth finish is well within the values recommended in the ASTM standards for total knee joint prosthesis. Further analysis was done using SEM imaging, white light interferometry and numerical simulations to verify that adapting SDM method provides improved surface integrity by reducing the extent of side flow, microchips and weldments during the hard turning process.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During nanoindentation and ductile-regime machining of silicon, a phenomenon known as “self-healing” takes place in that the microcracks, microfractures, and small spallings generated during the machining are filled by the plastically flowing ductile phase of silicon. However, this phenomenon has not been observed in simulation studies. In this work, using a long-range potential function, molecular dynamics simulation was used to provide an improved explanation of this mechanism. A unique phenomenon of brittle cracking was discovered, typically inclined at an angle of 45° to 55° to the cut surface, leading to the formation of periodic arrays of nanogrooves being filled by plastically flowing silicon during cutting. This observation is supported by the direct imaging. The simulated X-ray diffraction analysis proves that in contrast to experiments, Si-I to Si-II (beta tin) transformation during ductile-regime cutting is highly unlikely and solid-state amorphisation of silicon caused solely by the machining stress rather than the cutting temperature is the key to its brittle-ductile transition observed during the MD simulations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research paper presents a five step algorithm to generate tool paths for machining Free form / Irregular Contoured Surface(s) (FICS) by adopting STEP-NC (AP-238) format. In the first step, a parametrized CAD model with FICS is created or imported in UG-NX6.0 CAD package. The second step recognizes the features and calculates a Closeness Index (CI) by comparing them with the B-Splines / Bezier surfaces. The third step utilizes the CI and extracts the necessary data to formulate the blending functions for identified features. In the fourth step Z-level 5 axis tool paths are generated by adopting flat and ball end mill cutters. Finally, in the fifth step, tool paths are integrated with STEP-NC format and validated. All these steps are discussed and explained through a validated industrial component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research paper presents the work on feature recognition, tool path data generation and integration with STEP-NC (AP-238 format) for features having Free form / Irregular Contoured Surface(s) (FICS). Initially, the FICS features are modelled / imported in UG CAD package and a closeness index is generated. This is done by comparing the FICS features with basic B-Splines / Bezier curves / surfaces. Then blending functions are caculated by adopting convolution theorem. Based on the blending functions, contour offsett tool paths are generated and simulated for 5 axis milling environment. Finally, the tool path (CL) data is integrated with STEP-NC (AP-238) format. The tool path algorithm and STEP- NC data is tested with various industrial parts through an automated UFUNC plugin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The machining of carbon fiber reinforced polymer (CFRP) composite presents a significant challenge to the industry, and a better understanding of machining mechanism is the essential fundament to enhance the machining quality. In this study, a new energy based analytical method was developed to predict the cutting forces in orthogonal machining of unidirectional CFRP with fiber orientations ranging from 0° to 75°. The subsurface damage in cutting was also considered. Thus, the total specific energy for cutting has been estimated along with the energy consumed for forming new surfaces, friction, fracture in chip formation and subsurface debonding. Experiments were conducted to verify the validity of the proposed model.